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ABSTRACT 
ISO 4391:1984 gives the common efficiency definition for 

positive displacement machines. ISO 4409:2019 uses this 

efficiency definition to specify the procedure for efficiency 

measurements. If the machine conditions do not correspond with 

an incompressible flow due to operation at high pressure levels, 

the compressibility of the fluid and the dead volume of a pump 

must be taken into account. On this point, ISO 4391:1984 is 

physically inconsistent.  

Achten et. al. address this issue in their paper at FPMC 

2019 presenting a critical review of ISO 4409:2007. They 

introduce new definitions of the overall efficiency as well as the 

mechanical-hydraulic efficiency. At the same time, they question 

the validity of the volumetric efficiency definition. Li and Barkei 

continue on this issue in their paper at FPMC 2020 and give a 

new efficiency definition based on the introduction of a new 

quantity 𝛷  which describes the volume specific enthalpy of the 

conveyed fluid. 

The motivation of this paper is to contribute to the ongoing 

and fruitful discussion. Our approach starts with the most 

general efficiency definition, namely the isentropic efficiency. 

Subsequently, we make assumptions concerning the fluid 

properties with respect to the compressibility of the conveyed 

fluid. On the basis of the ideal cycle of a positive displacement 

pump and the p-v diagram, we derive physically consistent and 

more meaningful representations of the overall, the mechanical-

hydraulic and the volumetric efficiency that address the 

inconsistency of ISO 4391:1984. Furthermore, we compare our 

findings with the existing results of Achten et. al. and Li and 

Barkei.  

 

NOMENCLATURE 
𝑒  mass-specific internal energy 

𝑔  gravitational body force 

ℎl  loss enthalpy 

∆ℎs  mass-specific isentropic enthalpy difference 

∆ℎt,s total mass-specific and isentropic enthalpy  

  difference 

∆𝐻s  isentropic enthalpy difference  

𝑀hyd  hydraulic torque  

𝑀mh  friction torque  

𝑀S   shaft torque  

𝑚  mass 

𝑚eff  effective mass 

𝑚F  mass of conveyed fluid 

𝑚̇   mass flow  

𝑛   rotational speed  

𝑃loss  power loss 

𝑄̇  heat flow 

𝑄eff  effective volume flow  

𝑄L   leakage 

V experimentally determined  

displacement volume  

𝑉eff   effective displacement volume  

𝑉t   total volume  

𝑉d  dead volume 

𝑝  pressure 

𝑃S  shaft power 

𝑠  entropy 

𝑢  mean velocity at inlet or outlet of a machine 

𝜅  isentropic compressibility 
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𝐾S  isentropic bulk modulus 

𝜂   isentropic efficiency  

𝜂mh  mechanical-hydraulic efficiency  

𝜂vol  volumetric efficiency  

𝜚    density 

𝛷  volume-specific enthalpy 

 

1. INTRODUCTION 
The common efficiency definition for positive displacement 

machines is given by ISO 4391:1984 [1]. However, the overall 

efficiency definition and the definitions of the partial 

efficiencies, namely the volumetric efficiency and mechanical-

hydraulic efficiency are physically consistent only for an 

incompressible flow with the density 𝜚 = const. If the machine 

operates at high pressure levels the compressibility of the fluid 

and the dead volume of a pump must be taken into account. On 

this point, ISO 4391:1984 is physically inconsistent. 

Achten et. al. [2] address this issue in their paper at FPMC 

2019 presenting a critical review of ISO 4409:2007 [3]. 

ISO 4409:2007 specifies the procedure of efficiency 

measurements and adopts the efficiency definition from 

ISO 4391:1984. Meanwhile, a new version of ISO 4409 from 

2019 exists (ISO 4409:2019 [4]), that no longer explicitly states 

efficiency definitions and instead only refers to ISO 4391:1984. 

Consequently, a critical review of efficiency definitions must 

address ISO 4391:1984. Achten et. al. introduce a new definition 

of the overall efficiency as well as the mechanical-hydraulic 

efficiency discussing the influence of the compressibility of a 

fluid as well as the dead volume of a positive displacement 

machine. At the same time, they question the validity of a 

volumetric efficiency definition.  

Li and Barkei [5] continue on this issue in their paper at 

FPMC 2020 and also give new definitions of the overall and 

partial efficiencies considering a compressible flow. They 

introduce a new quantity Φ which designates the volume specific 

enthalpy of the conveyed fluid and serves as the equivalent to Δ𝑝 

considering the efficiency definitions for an incompressible flow. 

Furthermore, their approach makes no assumptions regarding 

compressibility or the relation between pressure and density. 

Based on a comparison of their own efficiency definition with 

the definition of Achten et. al and Williamson and Manrig [6], Li 

and Barkei still find differences and inconsistencies among the 

results. 

The motivation of this paper is to contribute to the ongoing 

discussion and to give a meaningful and physically consistent 

representation for the overall, the mechanical-hydraulic and the 

volumetric efficiency. At the beginning in section 2, we give the 

most general efficiency definition which is the starting point of 

our considerations. In the following, we make assumptions 

concerning the fluid properties which are analogous to the ones 

made by Achten et. al., namely the linearization of the 

constitutive relation between pressure and density and the use of 

an averaged isentropic bulk modulus. In section 3, on the basis 

of the assumptions, the ideal cycle of a positive displacement 

pump and the 𝑝-𝑉 diagram, we derive a physically consistent 

representation of the converted energy in a positive displacement 

machine. Both extensive and intensive quantities are considered. 

Consequently, we obtain physically consistent and meaningful 

representations of the overall efficiency, the volumetric 

efficiency and the mechanical-hydraulic efficiency. Section 4 

compares the results of this paper with the definitions of Achten 

et. al. and Li and Barkei. Finally, section 5 gives the conclusion.  

 

2. ENERGY BALANCE AND ASSUMPTIONS FOR 
EFFICIENCY DEFINITIONS 
The assessment of the energy conversion in a positive 

displacement machine is based on the assumption that the 

machine operates stationary on a time-averaged basis. Hence, the 

first law of thermodynamics reads  

𝑃𝑆 + 𝑄̇ = 𝑚̇𝛥ℎt, (1) 

 

with the mass flow 𝑚̇, the difference of the mass-specific 

total enthalpy between machine outlet and inlet 𝛥ℎt, the 

mechanical shaft power 𝑃S = 2𝜋𝑀𝑆𝑛 being the product of the 

shaft torque 𝑀S and the rotational speed 𝑛, and the heat flow 𝑄̇. 

All quantities are considered to be averaged over time. 

In the case of a pump, 𝑃S and 𝛥ℎt are both greater than zero, 

in the case of a motor, 𝑃S and 𝛥ℎt are negative. The mass flow at 

the inlet and outlet of a machine are identical. In case of an 

external leakage 𝑚̇L it is assumed to be redirected to the inlet of 

the pump or the outlet of a motor respectively as shown in 

FIGURE 1. Due to environmental constraints, real external 

leakage is unlikely. 

 
𝑀S
𝑛

𝑚̇ℎt, 

𝑚̇L

𝑚̇ℎt, 

PUMP MOTOR

𝑀S
𝑛

𝑚̇ℎt, 

𝑚̇L

𝑚̇ℎt, 

 
FIGURE 1: FIRST LAW OF THERMODYNAMICS FOR AN 

ADIABATIC POSITIVE DISPLACEMENT PUMP AND MOTOR. 
 

The commonly used efficiency definition for positive 

displacement machines is the isentropic efficiency. In fact, this 

efficiency definition is used for all machines, turbo machines or 

positive displacement machines with a compressible flow or an 

incompressible flow, as long as the machine operates 

adiabatically. Considering an adiabatic machine, the isentropic 

efficiency 𝜂 is defined as the ratio of the product of mass flow 

and mass-specific isentropic and total enthalpy difference 𝛥ℎt,s 

and the shaft power 

 

𝜂 ∶= (
𝑚̇𝛥ℎt,s

𝑃S

)
± 

. (2) 
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The exponent +1 applies to pumps, the exponent – 1 applies 

to motors. While the following sections focus on pumps, the 

described procedure can be applied on motors similarly.  

Dividing the mass-specific total enthalpy difference 𝛥ℎt 

into the isentropic fraction 𝛥ℎt,s and the loss fraction ℎl, we 

obtain the following representation of the isentropic efficiency 

 

𝜂 ∶= 1 −
𝑚̇ℎl

𝑃S

. (3) 

 

Equation (3) illustrates that the efficiency is a measure of 

the dissipative power losses 𝑃loss = 𝑚̇ℎl. 

Given an approximately incompressible flow and an ideally 

rigid machine, the total enthalpy ℎt is 

 

ℎt =
𝑝

𝜚
+

𝑢 

2
+ 𝑔𝑧 + 𝑒, 

(4) 

𝜚ℎt = 𝑝 + 𝜚
𝑢 

2
+ 𝜚𝑔𝑧 + 𝜚𝑒 = Δ𝑝t + 𝜚𝑒 

 

equation (2) leads to the ISO 4391:1984 efficiency 

definition 

 

𝜂 ∶=
Δ𝑝t𝑄

𝑃S

=
Δ𝑝t𝑄

2𝜋𝑀S𝑛
, (5) 

 

with the total pressure difference Δ𝑝t and the volume 

flow 𝑄. Extending equation (5) with the displacement volume 𝑉, 

the efficiency can be written as the product of the volumetic 

efficiency 𝜂vol and the mechanical-hydraulic efficiency 𝜂mh  

 

𝜂 = 𝜂vol𝜂mh, 𝜂vol ∶=
𝑄

𝑛𝑉
, 𝜂mh ∶=

Δ𝑝t𝑉

2𝜋𝑀S

. (6) 

 

The displacement volume needs to be determined 

experimentally on the basis of Toet’s method [7]. 

In the case of high pressure differences, the mass-specific 

isentropic internal energy difference Δ𝑒s must not be neglected 

which represents the converted energy due to compression. 

Hence, the compressibility of the fluid needs to be taken into 

account. At this point, we make the following two assumptions: 

(i) The compression and decompression of the fluid is 

isentropic (𝑠 = const) and can be described using 

an averaged isentropic bulk moduls 𝐾S or averaged 

isentropic compressibility 𝜅̅ = 1/ 𝐾S.  

(ii) The relation between volume 𝑉 and pressure 𝑝 of a 

fluid 

 

𝜅̅ ∶= −
1

𝑉

d𝑉

d𝑝
|𝑠  (7) 

 

is linearized and yields  

 

𝜅̅ ≈ −
1

𝑉

Δ𝑉

Δ𝑝
|𝑠. (8) 

 

As can be seen in section 3.2, these assumptions are not 

mandatory but can be easily extended by pressure dependent 

compressibility 𝜅(𝑝). However, the assumptions shorten the 

efficiency representations derived from the isentropic efficiency 

definition in equation (2), as can be seen in the next section. 

Furthermore, Ivantysyn und Ivantysynova [8] state that the 

resulting error due to linearization for common hydraulic fluids 

is negligible.  

 

3. EFFICIENCY DEFINTION BASED ON THE IDEAL 
CYCLE WITH DEAD VOLUME 
Based on the above assumptions, the next step is to 

determine the numerator of the isentropic efficiency definition in 

equation (2), which is the product of mass flow and the 

difference of the mass-specific isentropic enthalpy ∆ℎs (kinetic 

energy 𝑢 /2 and potential energy 𝑔𝑧 are neglected). 

 

3.1 Ideal cycle based on extensive quantities 
Firstly and for reasons of clarity, we focus on the isentropic 

enthalpy difference ∆𝐻s of the conveyed fluid mass per cycle, 

which is an extensive quantity. The isentropic enthalpy 

difference is equivalent to the energy transferred between 

machine and fluid per rotation. The time averaged mass flow 

 

𝑚̇ ∶=
1

𝑇
∫ 𝑚̃̇(𝑡)d𝑡

𝑇

0

 (9) 

 

is given by the time integral of the temporal mass flow 𝑚̃̇(𝑡) 

and the cycle time 𝑇 = 1 𝑛⁄ . Hence, the time averaged mass flow 

is the product of conveyed fluid mass per rotation 𝑚F and the 

rotational speed 𝑛 

 

𝑚̇ = 𝑛𝑚F. (10) 

 

This yields 

 

𝑚̇∆ℎs = 𝑛∆𝐻s. (11) 

 

FIGURE 2 shows the ideal cycle of a positive displacement 

pump with a dead volume 𝑉d filled by a compressible fluid in a 

𝑝-𝑉-diagram. The shaded area, given by the points abcd, states 

the isentropic enthalpy difference ∆𝐻s and needs to be calculated 

in order to derive a meaningful efficiency representation based 

on the efficiency definition (2) and equation (11). The dead 

volume results from the design of a positive displacement pump 

and must be calculated on the basis of the geometric pump 
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dimensions. The displacement volume 𝑉 is determined 

experimentally at a pressure difference Δ𝑝 = 0 (cf. [7]). 

 

 cc = 𝑉d + 𝑉d,e + 𝑉eff, 

𝜅Δ𝑝 

2

 dd = 𝑉d + 𝑉d,e

𝜅Δ𝑝 

2

  c d = 𝑉eff, Δ𝑝

  cd =   c d −  cc +  dd 

          = Δ𝑝𝑉eff, 1 −
𝜅Δ𝑝

2

𝑉d 𝑉d,e

P
R
E
S
S
U

R
E

VOLUME0
0

𝑝 

𝑝 

Δ𝑝

𝑉

      

  d  c 

   

d  c

𝑉eff, 

  cd = 𝛥𝐻𝑠

𝑉eff, 

 
FIGURE 2: IDEAL CYCLE FOR A POSITIVE DISPLACEMENT 

PUMP WITH A DEAD VOLUME AND A COMPRESSIBLE FLUID. 

 

Beginning the ideal cycle at the top dead center, point d, and 

the pressure 𝑝 , the dead volume decompresses, d→a, before 

refilling the displacement chamber at the pressure level 𝑝 , d→a. 

The difference between the compressed and expanded dead 

volume is called 𝑉d,e. In the following, the fluid with the 

effective displacement volume 𝑉eff,  flows into the displacement 

chamber, a→b. At the bottom dead center, point b, the total 

volume 𝑉t of the displacement chamber is 

 

𝑉t = 𝑉d + 𝑉 = 𝑉d + 𝑉d,e + 𝑉eff, . (12) 

 

The effective displacement volume 𝑉eff,  is given by 

 

𝑉eff, = 𝑉 − 𝑉d,e (13) 

 

and equation (8) yields 

 

𝑉d,e = 𝑉d𝜅̅|∆𝑝| . (14) 

 

Consequently, the effective displacement volume 𝑉eff,  can 

be calculated from the experimentally determined displacement 

volume 𝑉, the geometrically calculated dead volume 𝑉d, the 

averaged isentropic compressibility 𝜅̅  and the pressure 

difference ∆𝑝 . This is of major importance, as the 

decompression of the dead volume and reduction of usable 

displacement volume Δ𝑉 = 𝑉d,e = 𝑉 − 𝑉eff,  does not cause 

volumetric losses or dissipation of energy. Instead, it underlines 

the effective Volume 𝑉eff,  being the relevant geometric quantity 

in the partial efficiencies, the volumetric and mechanical-

hydraulic efficiency. 

Further on, the total volume is compressed to the pressure 

level 𝑝 , b→c,  and displaced from of the displacement chamber 

until the top dead center is reached again, c→d. 

The isentropic enthalpy difference ∆𝐻s (  cd) can now be 

calculated from the following areas, each described by its corner 

points  

 

  cd =   c d −  cc +  dd . (15) 

 

Each area can be easily calculated based on the edge lengths. 

These correspond to the pressure difference ∆𝑝, the effective 

displacement volume 𝑉eff,  and the volume difference due to 

compression, b→c, or expansion, d→a, calculated with 

equation (8). The results for the different areas are 

 

  c d  = ∆p𝑉eff,  , 

(16) 
 cc  = (Vd + Vd,e + 𝑉eff, )

𝜅̅∆𝑝 

2
 , 

 dd  = (Vd + Vd,e)
𝜅̅∆𝑝 

2
. 

 

The area  dd =  d   is calculated from the perspective of 

compressing the decompressed dead volume 𝑉d + 𝑉d,e, a→d.     

In this way, the compression energy can be represented by       

Vd + Vd,e. Since the compression or decompression is assumed 

to be isentropic, the absolute value of the converted mechanical 

energy is equal, a→d = d→a. However, due to the assumption 

made, namely the linearized relation in equation (8), there is a 

deviation between expansion and compression: 

 

 
area  dd  

expansion (d→a) 
=

𝑉d𝜅̅∆𝑝 

2
, (17) 

 

 
area  dd  

compression (a→d) 
=

(𝑉d + 𝑉d,e)𝜅̅∆𝑝 

2
. (18) 

 

This deviation results from the linearization error which is 

negligible for the range of practical pressures and therefore not 

considered any further. Equations (15) and (16) now leads to the 

isentropic enthalpy difference ∆𝐻S of the conveyed fluid mass  

𝑚eff = 𝑉eff, 𝜚  per rotation 

 

  cd =  ∆𝑝𝑉eff, (1 −
𝜅̅∆𝑝

2
) .  (19) 

 

Equation (19) gives a short, meaningful and physically 

consistent representation of the isentropic enthalpy difference 

which can be used for the efficiency representation based on the 

definition in equation (2). Before that, we derive the same result 

based on the mass specific isentropic enthalpy, which is an 

intensive quantity. 
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3.2 Ideal cycle based on intensive quantities  
Due to internal leakage, the measured mass flow rate       

𝑚̇ = 𝑛𝑚F (cf. eq. (10)) will differ from the effective mass flow 

𝑛𝑚e = 𝜚 𝑉eff, 𝑛 with the density 𝜚 = 𝜚(𝑝 ) . It is therefore 

advantageous to use the mass-specific isentropic enthalpy 

difference ∆ℎs, which is an intensive quantity: 

 

∆ℎs =
∆𝐻s,e

𝑚eff

=
∆𝑝

𝜚 

(1 −
𝜅̅∆𝑝

2
).  (20) 

 

Equation (20) can also be derived from the mass-specific    

𝑝-𝑣-diagram shown in FIGURE 3. The mass-specific isentropic 

enthalpy difference from state 1 to 2 also results in 

 

∆ℎ𝑠 = ∫ 𝑣d𝑝 ≈
∆𝑝

𝜚 

(1 −
𝜅̅∆𝑝

2
) .

 

 

  (21) 

 

One obtains the isentropic enthalpy change ∆𝐻s (abcd) by 

multiplying the corresponding fluid masses of the dead volume 

𝑚d and the effectively conveyed volume 𝑚eff = 𝜚 𝑉eff,   

 

  cd = ∆𝐻s = (𝑚eff + 𝑚d)∆ℎs − 𝑚d∆ℎs 

= 𝑚eff∆ℎs  

= ∆𝑝𝑉eff, (1 −
𝜅̅∆𝑝

2
) . 

(22) 

Δℎs = ∫ 𝑣d𝑝
 

 
=

Δ𝑝

𝜚 
1 −

𝜅Δ𝑝

2
= (𝑚d + 𝑚eff)Δℎs𝑝

𝑣
0

0

𝑝 

𝑝 

Δ𝑝

  1

 2

𝑣 = 1/𝜚 

𝑝

𝑉
0

0

      

  d  c

𝑉eff, 

  cd = 𝑚effΔℎs

= 𝑚dΔℎs

 
FIGURE 3: MASS-SPECIFIC 𝑝-𝑣-DIAGRAM FOR AN IDEAL 

POSITIVE DISPLACEMENT PUMP AND A COMPRESSIBLE 

FLUID. 

At the same time, it is obvious that the mass-specific 

isentropic enthalpy difference based on equation (21) can also be 

calculated with a non-linearized relationship of pressure and 

density (cf. equation (7)) and a pressure dependent 

compressibility 𝜅(𝑝). 

 

3.3 Efficiency representations 
Following the efficiency definition according to 

definition (2) and equation (21) one obtains 

 

𝜂 ≔
𝑚̇∆ℎs

2𝜋𝑀S𝑛
=  

𝑄 ∆𝑝

2𝜋𝑀S𝑛
(1 −

𝜅̅∆𝑝

2
).  (23) 

 

The mass flow 𝑚̇ = 𝜚 𝑄  is the product of the volume 

flow 𝑄  and the density 𝜚  at the pump inlet. Since the volume 

flow is usually measured at the pump outlet, the volume flow 𝑄  

can be calculated with equation (8) by 

 

𝑄 =
𝑄 

1 − 𝜅̅∆𝑝
.  (24) 

 

Based on equation (23), representations of the partial 

efficiencies can be derived, which also give a physically 

consistent and meaningful measure for the volumetric and 

mechanical-hydraulic losses: 

 

(i) The leakage 𝑄L = 𝑄eff, − 𝑄  represents the difference 

between the effective volume flow 𝑄eff, = 𝑛𝑉eff,  and 

the measured volume flow at pump inlet 𝑄 . The leakage 

causes the power loss 𝑃loss,L = ∆𝑝𝑄L. 

(ii) The friction torque 𝑀mh = 𝑀S − 𝑀hyd is calculated from 

the difference of shaft torque 𝑀S and hydraulic torque 

𝑀hyd =
∆𝑝𝑉eff,1

 𝜋 
(1 −

𝜅̅∆𝑝

 
). This results in the power 

loss 𝑃loss,mh = 2𝜋𝑀mh𝑛. 

 

Extending equation (23) with the effective displacement 

volume 𝑉eff,  (cf. equation (13) and (14)) in the numerator and 

denominator, the isentropic efficiency yields 

 

𝜂 ≔  
𝑄 

𝑛𝑉eff, 

∆𝑝𝑉eff, 

2𝜋𝑀S

(1 −
𝜅̅∆𝑝

2
). (25) 

 
Consequently, definitions of the volumetric efficiency  𝜂vol 

and the mechanical-hydraulic efficiency 𝜂mh can be given by 

 

𝜂vol ≔
𝑄 

𝑛𝑉eff, 

= 1 −
𝑄L

𝑛𝑉eff, 

 , 

𝜂mh ≔
𝛥𝐻S

2𝜋𝑀S

=
∆𝑝𝑉eff, 

2𝜋𝑀S

(1 −
𝜅̅∆𝑝

2
) 

=
1

1 +
2𝜋

1 − 𝜅̅ ∆𝑝 2⁄
𝑀mh

∆𝑝𝑉e

 

(26) 

 

Equations (23) and (26) provide representations of the 

overall efficiency, the volumetric and the mechanical-hydraulic 

efficiency which measure the energetic quality of positive 

displacement pumps with a dead volume in a physically 

consistent and meaningful way. Hence, the energetic quality can 

also be quantified based on the volumetric losses 𝑄L and the 
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friction or momentum losses of the conveyed fluid 𝑀mh. If the 

dead volume is negligibly small or the flow is approximately 

incompressible due to low pressure differences of the pump, the 

effective displacement volume 𝑉eff,  and the experimentally 

determined displacement volume 𝑉 will be identical. 

Furthermore, 𝜅∆𝑝 ≪ 1 and the efficiency definitions of ISO 

4391 according to equations (5) and (6) can be applied. 

 

4. COMPARISON OF EFFICIENCY  
REPRESENTATIONS IN THE LITERATURE 
As stated in the introduction the motivation of this paper is 

to contribute to the ongoing and fruitful discussion about 

meaningful and physically consistent efficiency representations 

of positive displacement machines with a dead volume and a 

compressible flow which was started at FPMC 2019 by Achten 

et. al [2]. Against this background, the overall efficiency and 

partial efficiency representations derived in this paper are 

compared to the efficiency representations given by Achten et. 

al. and Li and Barkei [4]. TABLE 1 summarizes all efficiency 

representations in the notation of this paper considering a pump 

with one single displacement chamber. 

Achten et. al. make new proposals for the overall and the 

mechanical hydraulic efficiency. They also calculate the 

isentropic enthalpy Δ𝐻S from the ideal cycle of a positive 

displacement machine (cf. FIGURE 2) but derive a more 

extensive formula resulting in a more extensive representation of 

the mechanical efficiency as well. This is due to the calculation 

of the area  dd  (cf. FIGURE 2) from the perspective of an 

expansion (see equations (17) and (18)) and due to the 

linearization error. On the other hand, Achten et. al.’s definition 

of the overall efficiency is physically inconsistent. They 

integrate the inner energy (see [2] equation (5)) neglecting the 

pressure dependent density 𝜚. Consequently, this leads to a 

physically inconsistent result of the hydraulic power as well 

which is the nominator of the overall efficiency. At the same 

time, they question the validity of a volumetric efficiency 

definition and, thus, do not provide one. A physically consistent 

volumetric efficiency definition that fulfills 𝜂 = 𝜂mh𝜂vol, is not 

achievable due to their overall efficiency definition. 

Furthermore, their view on the volumetric efficiency does not 

address rotating positive displacement pumps, which (i) are used 

at lower pressures, (ii) usually have no or a negligible dead 

volume, and for which (iii) volumetric losses are often decisive 

for efficiency. In this regard, the volumetric efficiency must be a 

measure of the power losses due to leakage. 

Li and Barkei give generally valid and physically consistent 

definitions of the overall efficiency, the volumetric and the 

mechanical hydraulic efficiency. These definitions contain their 

newly introduced quantity Φ which is the volume-specific 

enthalpy (cf. FIGURE 2) 

 

Φ ≔ 
𝛥𝐻S

𝑉eff, 

. (27) 

 

In this way, they do not make any assumptions regarding the 

fluid properties, namely the compressibility of the fluid, e.g. by 

using an averaged bulk modulus or by linearizing the relation of 

pressure and density. However, this is why their approach results 

in efficiency representations that are slightly more difficult to 

understand. Regardless of this, Li and Barkei’s representations 

are identical to the representations derived in this paper when 

taking into account the assumptions made in section 2. 

 

5. CONCLUSION 
On the basis of the most general efficiency definition, 

namely the isentropic efficiency, the assumptions considering the 

fluid properties and the 𝑝-𝑣 diagram, we derive physically 

consistent and meaningful representations of the overall, the 

volumetric and the mechanical-hydraulic efficiency. These 

representations are consistent with the definitions of Li and 

Barkei [4] and may serve as a template for a revision of 

ISO 4391:1984 [1]. In particular, the use of the effective volume 

𝑉eff,  at a low-pressure level (cf. equation (13) and (14)) is the 

basis of a short and comprehensible efficiency representation. 

 

 

TABLE 1:EFFICIENCY DEFINITIONS OF PUMPS. 

volumetric efficiency 

   

Achten et. al:  no definition 

   

Li and Barkei:  𝜂vol ∶=
𝑄 

𝑛𝑉eff, 

=
𝑄 

𝑛𝑉eff, 

 

   

this paper:  𝜂vol ∶=
𝑄 

𝑛𝑉eff, 

=
𝑄 

𝑛𝑉eff, 

 

   

mechanical-hydraulic efficiency  

   

Achten et. al:  𝜂mh ∶=
Δ𝑝𝑉

2𝜋𝑀S

[1 − Δ𝑝𝜅̅ (
1

2
+

𝑉d

𝑉
)] 

   

Li and Barkei:  𝜂mh ∶=
𝑉eff, Φ(Δ𝑝, 𝑝 )

2𝜋𝑀S

 

  Φ(Δ𝑝, 𝑝 ) ≔
1

𝑉eff, 

∫ 𝑉d𝑝
 

 

=
Δ𝐻S

𝑉eff, 

 

   

this paper:  𝜂mh ≔
∆𝑝𝑉eff, 

2𝜋𝑀S

(1 −
𝜅̅∆𝑝

2
) =

Δ𝐻S

2𝜋𝑀S

 

  =
∆𝑝𝑉eff, 

2𝜋𝑀S

(1 − 𝜅̅∆𝑝/2)

(1 − 𝜅̅∆𝑝)
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overall efficiency 

   

Achten et. al:  𝜂 ∶=
p 𝑄 (1 +

𝑝 𝜅̅
2

) − 𝑝 𝑄 

2𝜋𝑀S𝑛
 

   

Li and Barkei:  𝜂 ∶=
𝑄 Φ(Δ𝑝, 𝑝 )

2𝜋𝑀S𝑛
 

   

this paper:  𝜂 ≔
∆𝑝𝑄 

2𝜋𝑀S𝑛
(1 −

𝜅̅∆𝑝

2
)  

  =
∆𝑝𝑄 

2𝜋𝑀S𝑛

(1 − 𝜅̅∆𝑝/2)

(1 − 𝜅̅∆𝑝)
 

 

REFERENCES 
[1] ISO 4391:1984, “Hydraulic fluid power; pumps, motors 

and integral transmissions, parameter definitions and 

letter symbols”, Beuth Verlag, Berlin, Germany, 1984. 

[2]  P. Achten, R. Mommers, T. Nishiumi, H. Murrenhoff, 

N. Sepehri, K. Stelson, J.-O. Palmberg, and K. Schmitz, 

“Measuring the losses of hydrostatic pumps and 

motors: A critical review of Iso4409:2007,” in 

Proceedings of 2019 ASME/BATH Symposium on Fluid 

Power and Motion Control. American Society of 

Mechanical Engineers, 2019. 

[3] ISO 4409:2007, “Hydraulic fluid power – Positive 

displacement pumps, motors and integral transmissions 

– Methods of testing and presenting basic steady state 

performance”, Beuth Verlag, Berlin, Germany, 2007. 

[4] ISO 4409:2019, “Hydraulic fluid power – Positive 

displacement pumps, motors and integral transmissions 

– Methods of testing and presenting basic steady state 

performance”, Beuth Verlag, Berlin, Germany, 2007. 

[5]  P.Y. Li and J.H. Barkei, “Hydraulic effort and the 

efficiencies of pump and motors with compressible 

fluid” in Proceedings of 2020 ASME/BATH Symposium 

on Fluid Power and Motion Control. American Society 

of Mechanical Engineers, 2020. 

[6]  C. Williamson and N. Manring, “A more accurate 

definition of mechanical and volumetric efficiencies for 

digital displacement pumps” in Proceedings of 2019 

ASME/BATH Symposium on Fluid Power and Motion 

Control. American Society of Mechanical Engineers, 

2019. 

[7]  G. Toet, J. Johnson, J. Montague, K. Torres and J. 

Garcia-Bravo, „The Determination of the Theoretical 

Stroke Volume of Hydrostatic Positive Displacement 

Pumps and Motors from Volumetric Measurements“, in 

Energies 12.3, 2019. 

[8]  J. Ivantysyn und M. Ivantysynova, "Hydrostatische 

Pumpen und Motoren: Konstruktion und Berechnung“, 

Vogel, Würzburg, Germany, 1993. 

 

 



2. First review of paper FPMC2021-68739 by Peter Achten and Robin Mommers  
(send on May 21, 2021 to the organizers of the FPMC)  



Review 
Meaningful and Physically Consistent Efficiency Definition for 
Positive Displacement Pumps - Continuation of the Critical Review 
of ISO 4391 and 4409 (FPMC2021-68739) 

Introduction

Contrary to normal conventions we (Peter Achten and Robin Mommers) decided, as reviewers, not to 
have an anonymous review, but instead to have an open (ongoing and fruitful) discussion. Obviously 
we consider the review of ISO4409 and 4391 an important discussion and we highly value your 
thoughts and concerns. 


The intend of our 2019-paper  was to propose a new set of definitions and equations for the losses and 1

efficiencies of hydrostatic pumps and motors. The new set was meant as a replacement of the 
equations which were at that time defined in ISO4409:2007. 


It was our goal to create a new set of efficiency and loss definitions which are:


- Practical, i.e. not too complicated for general use;

- Useful, which means that you can measure or determine the parameters involved with sufficient 

accuracy;

- Generic, i.e. valid for all hydrostatic pumps and motors, including variable displacement pumps and 

motors. But also including units with a zero or near zero dead volume, or units which are used at 
lower pressures, or units which predominantly have high volumetric losses.


The new equations are not a precise representation of the physical reality (if ever this is possible), but 
sufficiently accurate to have a better understanding of the losses, than current conventions and 
standards allow us. There are many effects and influences that we have considered to be of less 
importance and for which we have decided that these effects could be ignored or neglected. Many of 
these assumptions have been discussed with our colleagues in academia and industry, also outside 
the group of authors of our 2019-paper. 


We would also encourage you to read our report ’Performance of Hydrostatic Machines’ from INNAS, 
which can be downloaded at the INNAS website (www.innas.com). Annex B of this report discusses a 
sensitivity analysis of the bulk modulus and the possible effects of a pressure dependent density 
model.


To quote this report: “In conclusion, it is found that the alleged increase in accuracy gained by using a 
detailed oil density model to determine the bulk modulus is probably negligible compared to the 
accuracy of the measurement results. For the sake of clarity as well as simplicity, the use of a constant 
value for the isentropic bulk modulus during the calculation of hydrostatic performances will suffice.” 


We have chosen to assume a constant density and bulk modulus model (as you do as well, at least 
implicitly in your analysis) because the influence is rather small and would result in much more 
complicated definitions of all efficiencies and losses.  

 Achten, P., R. Mommers, T. Nishiumi, H. Murrenhoff, N. Sepehri, K. Stelson, J.-O. Palmberg, K. Schmitz, 1

‘Measuring the losses of hydrostatic pumps and motors - A critical review of ISO 4409, Proc. FPMC2019, ASME/
Bath Symposium on Fluid Power and Motion Control, October 7-9, 2019, Sarasota, Florida, USA (FPMC2019-1615)

1

http://www.innas.com


Consensus

Let us first start with the consensus: we both agree upon the necessity for a revision of the ISO-
standards with respect to definition and equations for the overall efficiency, the hydro-mechanical and 
the volumetric efficiency of hydrostatic pumps and motors. We furthermore agree that the effects of the 
bulk modulus of the oil need to be included in the loss analysis of hydrostatic pumps and motors. 
Although the equations, which are proposed by you in Table 1, don’t mention explicitly any influence of 
the dead volume, there is an implicit influence through the relation between V and Veff,1. Substituting 
Eq.14 in Eq.13 results in:


(1)

In this equation, Vd represents the dead volume. In our paper, this parameter is called Vmin. 
Consequently, we both agree that the influence of the dead volume should be included in the efficiency 
definitions.


At first sight it seems that your equations for the mechanical-hydraulic efficiency and the overall 
efficiency differ much from ours, but in reality they are almost the same. Also here we (almost) agree. 
That can be explained as follows:


Your paper results in the following definition of the mechanical-hydraulic efficiency:


(2)

Substituting the above equation (Eq.1) for  Veff,1 results in:


(3)

This is almost the same equation as ours (see Table 1 in your manuscript), except for the term:


Just to give you an idea of the magnitude, we can calculate the value of:


(4)

being our correction factor, and


(5)

being the correction factor that follows from your equation. Assuming:


Veff ,1 =V −Vd κ Δp

ηmh =
ΔpVeff ,1
2πMS

1−κ Δp
2

⎛
⎝⎜

⎞
⎠⎟

ηmh =
ΔpV
2πMS

1−κ Δp 1
2
+ Vd
V

⎡
⎣⎢

⎤
⎦⎥
+ Vd
V

κ Δp[ ]2
2

⎛

⎝
⎜

⎞

⎠
⎟

Vd
V

κ Δp[ ]2
2

1−κ Δp 1
2
+ Vd
V

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

1−κ Δp 1
2
+ Vd
V

⎡
⎣⎢

⎤
⎦⎥
+ Vd
V

κ Δp[ ]2
2

⎛

⎝
⎜

⎞

⎠
⎟

2



(6)

our correction factor becomes a value of 0.9713 and yours 0.9715, a difference of 0.0002.


Furthermore your equation for the overall efficiency can be rewritten as follows:


(7)

This is rather similar to our equation:


(8)

If, for the moment, we ignore the fact that we split p2 and p1, whereas you consider the pressure 
difference ∆p, than our correction term is:


(9)

whereas yours is:


 (10)

Again using the parameters mentioned in Eq(6), our correction factor has a value of 1,0120 and yours 
of 1,0123, a difference of 0,0003.


These differences are so small that we can conclude that we largely have a consensus about the new 
definitions for the mechanical-hydraulic and the overall efficiency.


κ = 6E −10 [Pa−1]
Δp = 400 [bar] = 4E7 [Pa]
Vd V = 0.7  [-]

η = ΔpQ2

2πMS

1−κ Δp / 2( )
1−κ Δp( ) = ΔpQ2

2πMS

1+κ Δp / 2 −κ Δp( )
1−κ Δp( ) =

  = ΔpQ2

2πMS

1+ κ Δp / 2
1−κ Δp( )

⎛

⎝⎜
⎞

⎠⎟

η =
p2Q2 1+κ Δp / 2( )− p1Q1

2πMS

1+κ Δp / 2( )

1+ κ Δp / 2
1−κ Δp( )

⎛

⎝⎜
⎞

⎠⎟
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Differences

Aside from the consensus, we also have some important differences:


1. As mentioned in the introduction, our equations are for all hydrostatic pumps and motors, also 
pumps and motors with an external case drain or a pre-charged oil supply (i.e. p1 ≠ 0). You consider 
the outgoing mass flow equal to the input, which means you exclude all pumps and motors having 
an external case drain. Furthermore:


(11)

We believe that you are making a mistake when assuming that ∆pQ = p2Q2 – p1Q1 (as you do in 
your paper) Not only when p1 ≠ 0, but also because a pressurised and heated up flow is different 
from a low pressure flow at another temperature. This is also the reason why your definition of the 
overall efficiency differs from ours. It should be noted that also ISO4391 mentions a separation of 
the p2 and p1 flows.


2. Whenever the pressure level at the low pressure side is higher than the case pressure, it is no 
longer certain from which pressure level the volumetric losses come from. Part of the loss will come 
from the high pressure side of the pump, but another part will come from the low pressure side. 
Since the bearing gaps are often larger at the low pressure side, the leakage from the low pressure 
side is often considerable, despite the lower pressure level. 


3. This argument seems to be of no concern if the pump or motor housing has the same pressure 
level as the low pressure side of the unit, but even then the ∆p at which leakage occurs is 
uncertain. The thermodynamic cycle, represented in the pV-diagram, is not a closed cycle. You may 
use it for determining the indicated work of a single cycle (which can be used for calculating the 
hydro-mechanical efficiency), but you can’t use it for calculating the volumetric efficiency.  
 
As an example, consider a hydrostatic axial piston motor taking high pressure oil from a high 
pressure supply line. During commutation the high and low pressure side are connected via the 
silencing grooves. At that moment there is a short circuit connection, and the motor is just taking oil 
from the high pressure line as much as is needed. However, during the commutation, the pressure 
in the commutating cylinder increases. As a result, the short circuit leakage flow occurs at variable 
pressure differentials. Consequently your assumption in section 3.3, point (i) that Ploss,L = ∆pQL is 
incorrect.


4. We object to the idea that the volumetric efficiency can be defined as Q1/nVeff,1 (Eq.26 and Table 1 
in your manuscript). This is a flow ratio, not an energy or power ratio. Whereas the denominator 
could be multiplied by a pressure level (in order to convert it to a power unit), this can’t be done 
with the numerator, since you don’t know from which pressure level or pressure differential the 
leakage flow originates. This is also the reason why we didn’t define a volumetric efficiency.


5. In section 4 you write that we “question the validity of a volumetric efficiency definition and, thus, 
do not provide one. A physically consistent volumetric efficiency definition that fulfils 𝜂=𝜂mh 𝜂vol, is 
not achievable due to their overall efficiency definition.” 


We didn’t provide a definition of the volumetric efficiency because we couldn’t find a definition 
which was physically consistent with the inner processes in hydrostatic pumps and motors. You 
can make and define a flow ratio, but that is not the same as a power or energy ratio (which was 
the topic of our paper). 


p2Q2 − p1Q1 ≠ ΔpQ

4



The fact that we didn’t come up with a definition of the volumetric efficiency has nothing to do with 
our definition of the overall efficiency. After all, in theory, it could be possible to make an equation in 
which our overall efficiency is divided by our definition of the hydro-mechanical efficiency, which 
would then result in a ‘volumetric efficiency’ which fulfils 𝜂=𝜂mh 𝜂vol. But this would not make any 
sense due to the reasons mentioned before.


6. The difference between your equation for the mechanical-hydraulic efficiency and ours is due to the 
calculation of the area abcd in your paper, which is the equivalent of Ei in our paper. You are correct 
that the linearisation of Eq.7 in your paper to Eq.8 results in an error. We also agree that this error is 
negligible. However, due to the linearisation, the area add’ can result in slightly different equations 
(as you indicate in Eqs.17 and 18). The difference is however negligible (as you have mentioned 
yourself). Nevertheless, you chose to use Eq.18 for your further analysis. This is inconsistent with 
Eq.14 in which you define Vd,e. It should be clear that the triangular area add’ can be calculated as:


(12)

When substituting your Eq.14 from the manuscript in the equation above, you’ll get:


(13)

which equals Eq. 17 in your manuscript. If you would have continued to use this equation to 
calculate the area abcd, then your definition of the hydro-mechanical efficiency would result in the 
same equation as ours, aside from the difference in using ∆p (which you do), versus splitting the 
energy levels p2 and p1 (like we do). It should also be noted that also for the calculation of the area 
bcc’, the same difference between ‘expansion’ and ‘compression’ could be made as you did for 
add’. Also in that case, the choice would be rather arbitrary and only result in a negligible error. It is 
however remarkable that you noted the difference for add’ but not for the calculation of area bcc’. 
Furthermore, the use of Eq.17 does not correspond to your definition of Vd,e (Eq. 14).


ad ′d = 1
2 ΔpVd ,e

ad ′d =
Vd ,eκ Δp
2
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Comments

1. How do you suggest that Veff,1 can be measured?


2. If Veff,1 needs to be calculated from Eq.13 from your manuscript, wouldn’t it be better to define 
your equations also based on V instead of Veff,1?


3. We would have preferred if, instead of Eq.1 in your manuscript you would have used our first step 
in the analysis:


(14)

Aside from being a more general equation, the above equation also clarifies that, in our opinion, you 
can’t just multiply ∆p with Q, as you do in Eq.23


4. In Eq.4 you suddenly convert the local pressure p to a pressure differential ∆pt (for which no 
definition is given in the nomenclature). We believe this is wrong.


5. The area add’ can also be calculated on the basis of the volume Vd,e, which would then result in Eq.
17 to be used for further analysis.


6. Do you agree that the differences between your definition of the overall efficiency and ours is very 
small if not negligible?


7. Do you agree that the differences between your definition of the mechanical-hydraulic efficiency 
and ours is very small if not negligible?


8. Do you agree that you would have the same definition for the mechanical-hydraulic efficiency if you 
would have used Eq.17 for calculating abcd?


9. It is not possible to define the volumetric power loss Ploss,L as ∆pQL.


10. It is not possible to make a definition for the volumetric efficiency in terms of a power or energy 
ratio.


11. It is incorrect that our definition of the overall efficiency in ‘physically inconsistent’. We urgently 
invite you to show us why or where you see any physical inconsistency. 


12. We disagree that we have a different overall and a different hydro-mechanical efficiency because of 
the linearisation error. We both make the same linearisation error. We both agree that this error is 
negligible.


13. We indeed assume the density to be constant in Eq.5 of our paper (your remark in section 4). 
However your analysis and equations are not different from ours in this perspective. The error of 
this assumption has been quantified in our test report and can be considered to be negligible.


14. In section 4 you write that we can’t make a physically consistent volumetric efficiency definition due 
to our overall efficiency definition. We kindly ask you to explain this statement.


PS + !Q = !m2h2 − !m1h1 =

												 = 	Q2ρ2 u2 +
p2
ρ2

⎛

⎝⎜
⎞

⎠⎟
−Q1ρ1 u1 +

p1
ρ1

⎛

⎝⎜
⎞

⎠⎟
=

												 = 	 Q2ρ2u2 −Q1ρ1u1( )+ p2Q2 − p1Q1( )
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15. In section 4 you write that our view on the volumetric efficiency does not address rotating positive 
displacement pumps which are used at lower pressures. We kindly ask you to explain this 
statement.


16. In section 4 you write that our view on the volumetric efficiency does not address rotating positive 
displacement pumps which usually have no or a negligible dead volume. We kindly ask you to 
explain this statement. Please note that in our report ’Performance of Hydrostatic Machines’ we 
also show the test results of a Marzocchi pump which has a zero dead volume. 


17. In section 4 you write that our view on the volumetric efficiency does not address rotating positive 
displacement pumps for which volumetric losses are often decisive. We kindly ask you to explain 
this statement.


18. In the conclusion you emphasise the importance of basing your equations on Veff,1. As mentioned 
before, we can’t understand how this results in a practical set of equations since there is no way of 
measuring  Veff,1


19. TABLE 1: The volumetric efficiency from your manuscript (and that of Li and Barkei) are wrong if 
considered from an energy analysis point of view.


20. TABLE 1: Your equation for the mechanical-hydraulic efficiency is almost equal to ours. The 
differences are due to a different assumption in the linearisation of the commutation processes. The 
differences are in the end negligible.


21. TABLE 1: As a general formula for pumps and motors it is wrong to assume to use ∆p for a single 
flow (Q1 or Q2) instead of a separation of the high and low pressure flows.


22. Finally: Why is it so important that the overall efficiency needs to be the product of a hydro-
mechanical efficiency and some kind of volumetric efficiency? Energy efficiencies can be multiplied 
in order to get an overall efficiency, if and only if the processes are in series. An example is the 
combination  of an electric motor and a pump, for which you may multiply the efficiency of the 
electric motor with the efficiency of the pump. But the friction and leakage losses in a pump are not 
processes which can be separated, nor can they be considered to run in series.


May, 2021

Peter Achten and Robin Mommers

INNAS
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ABSTRACT 
ISO 4391:1984 gives the common efficiency definition for 

positive displacement machines. ISO 4409:2019 uses this 
efficiency definition to specify the procedure for efficiency 
measurements. If the machine conditions do not correspond with 
an incompressible flow due to operation at high pressure levels, 
the compressibility of the fluid and the dead volume of a pump 
must be taken into account. On this point, ISO 4391:1984 is 
physically inconsistent.  

Achten et. al. address this issue in their paper at FPMC 
2019 presenting a critical review of ISO 4409:2007. They 
introduce new definitions of the overall efficiency as well as the 
mechanical-hydraulic efficiency. At the same time, they question 
the validity of the volumetric efficiency definition. Li and Barkei 
continue on this issue in their paper at FPMC 2020 and give a 
new efficiency definition based on the introduction of a new 
quantity 𝛷𝛷  which describes the volume specific enthalpy of the 
conveyed fluid. 

The motivation of this paper is to contribute to the ongoing 
and fruitful discussion. Our approach starts with the most 
general efficiency definition, namely the isentropic efficiency. 
Subsequently, we make assumptions concerning the fluid 
properties with respect to the compressibility of the conveyed 
fluid. On the basis of the ideal cycle of a positive displacement 
pump and the p-v diagram, we derive physically consistent and 
more meaningful representations of the overall, the mechanical-
hydraulic and the volumetric efficiency that address the 
inconsistency of ISO 4391:1984. Furthermore, we compare our 
findings with the existing results of Achten et. al. and Li and 
Barkei.  

 

NOMENCLATURE 
𝑒𝑒  mass-specific internal energy 
𝑔𝑔  gravitational body force 
ℎl  loss enthalpy 
∆ℎs  mass-specific isentropic enthalpy difference 
∆ℎt,s total mass-specific and isentropic enthalpy  

  difference 
∆𝐻𝐻s  isentropic enthalpy difference  
𝑀𝑀hyd  hydraulic torque  
𝑀𝑀mh  friction torque  
𝑀𝑀S   shaft torque  
𝑚𝑚  mass 
𝑚𝑚eff  effective mass 
𝑚𝑚F  mass of conveyed fluid 
𝑚̇𝑚   mass flow  
𝑛𝑛   rotational speed  
𝑃𝑃loss  power loss 
𝑄̇𝑄  heat flow 
𝑄𝑄eff  effective volume flow  
𝑄𝑄L   leakage 
V experimentally determined  

displacement volume  
𝑉𝑉eff   effective displacement volume  
𝑉𝑉L   leakage volume per rotation 
𝑉𝑉t   total volume  
𝑉𝑉d  dead volume 
𝑝𝑝  pressure 
𝑃𝑃S  shaft power 
𝑠𝑠  entropy 
𝑢𝑢  mean velocity at inlet or outlet of a machine 
𝜅𝜅  isentropic compressibility 
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𝐾𝐾S  isentropic bulk modulus 
𝜂𝜂   isentropic efficiency  
𝜂𝜂mh  mechanical-hydraulic efficiency  
𝜂𝜂vol  volumetric efficiency  
𝜚𝜚    density 
𝛷𝛷  volume-specific enthalpy 
 

1. INTRODUCTION 
The common efficiency definition for positive displacement 

machines is given by ISO 4391:1984 [1]. However, the overall 
efficiency definition and the definitions of the partial 
efficiencies, namely the volumetric efficiency and mechanical-
hydraulic efficiency are physically consistent only for an 
incompressible flow with the density 𝜚𝜚 = const. If the machine 
operates at high pressure levels the compressibility of the fluid 
and the dead volume of a pump must be taken into account. On 
this point, ISO 4391:1984 is physically inconsistent. 

Achten et. al. [2] address this issue in their paper at FPMC 
2019 presenting a critical review of ISO 4409:2007 [3]. 
ISO 4409:2007 specifies the procedure of efficiency 
measurements and adopts the efficiency definition from 
ISO 4391:1984. Meanwhile, a new version of ISO 4409 from 
2019 exists (ISO 4409:2019 [4]), that no longer explicitly states 
efficiency definitions and instead only refers to ISO 4391:1984. 
Consequently, a critical review of efficiency definitions must 
address ISO 4391:1984. Achten et. al. introduce a new definition 
of the overall efficiency as well as the mechanical-hydraulic 
efficiency discussing the influence of the compressibility of a 
fluid as well as the dead volume of a positive displacement 
machine. At the same time, they question the validity of a 
volumetric efficiency definition.  

Li and Barkei [5] continue on this issue in their paper at 
FPMC 2020 and also give new definitions of the overall and 
partial efficiencies considering a compressible flow. They 
introduce a new quantity Φ which designates the volume specific 
enthalpy of the conveyed fluid and serves as the equivalent to Δ𝑝𝑝 
considering the efficiency definitions for an incompressible flow. 
Furthermore, their approach makes no assumptions regarding 
compressibility or the relation between pressure and density. 
Based on a comparison of their own efficiency definition with 
the definition of Achten et. al and Williamson and Manrig [6], Li 
and Barkei still find differences and inconsistencies among the 
results. 

The motivation of this paper is to contribute to the ongoing 
discussion. In this regard, our argumentation adheres the 
following principles: 
(i) Definitions are never wrong. Instead, appropriate criteria 

for definitions are their meaningfulness, their physical 
consistency and their acceptance. For efficiency definitions 
to be accepted, they must be easy to apply, practical for 
users, and based on a transparent derivation. 

(ii)  The definition of partial efficiencies based on the extension 
of the isentropic efficiency definition with the displacement 
volume goes hand in hand with the idea of an ideal, i.e. loss-
free, machine that is characterized by its displacement 
volume. This allows the calculation of the converted energy 

per rotation as well as the volume flow of an ideal machine, 
which are essential for the partial efficiencies. Thus, the 
partial efficiencies have a high practical value and provide 
a starting point to modeling the overall efficiency. 
Modeling succeeds on the basis of loss analysis, as 
systematically started by Wilson [7] by means of tribology 
and fluid mechanics. 

(iii) The idea of using an ideal machine as a reference is a 
proven and well-known approach. Four prominent 
examples demonstrate this: firstly, the considerations of 
Sadi Carnot on an ideal heat engine leading to the definition 
of Carnot's efficiency [8], secondly, the considerations of 
Betz on the upper limit of wind power for wind turbines [9], 
thirdly, the considerations of Pelz on the upper limit for 
hydropower in an open-channel flow [10] and, fourthly, the 
considerations of Turing on an abstract machine based on 
mathematical model, i.e. the Turing machine [11]. 

Following these principles, we present meaningful and 
physically consistent representations for the overall efficiency as 
well as the mechanical-hydraulic and the volumetric efficiencies. 

At the beginning in section 2, we give with the most general 
efficiency definition which is the starting point of our 
considerations. In the following, we make assumptions 
concerning the fluid properties which are analogous to the ones 
made by Achten et. al., namely the linearization of the 
constitutive relation between pressure and density and the use of 
an averaged isentropic bulk modulus. In section 3, we introduce 
the effective displacement volume and analyze the energy 
conversion in an ideal positive displacement machine based on 
both extensive and intensive quantities of the converted energy. 
Consequently, we obtain physically consistent and meaningful 
representations of the overall efficiency, the volumetric 
efficiency and the mechanical-hydraulic efficiency. Section 4 
compares the results of this paper with the definitions of Achten 
et. al. and Li and Barkei. Finally, section 5 gives the conclusion.  

 
2. ENERGY BALANCE AND ASSUMPTIONS FOR 

EFFICIENCY DEFINITIONS 
The assessment of the energy conversion in a positive 

displacement machine is based on the assumption that the 
machine operates stationary on a time-averaged basis. Hence, the 
first law of thermodynamics reads  

𝑃𝑃𝑆𝑆 + 𝑄̇𝑄 = 𝑚̇𝑚𝛥𝛥ℎt, (1) 

 
with the mass flow 𝑚̇𝑚, the difference of the mass-specific 

total enthalpy between machine outlet and inlet 𝛥𝛥ℎt, the 
mechanical shaft power 𝑃𝑃S = 2𝜋𝜋𝑀𝑀𝑆𝑆𝑛𝑛 being the product of the 
shaft torque 𝑀𝑀S and the rotational speed 𝑛𝑛, and the heat flow 𝑄̇𝑄. 
All quantities are considered to be averaged over time. 
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In the case of a pump, 𝑃𝑃S and 𝛥𝛥ℎt are both greater than zero, 
in the case of a motor, 𝑃𝑃S and 𝛥𝛥ℎt are negative. The mass flow at 
the inlet and outlet of a machine are identical. In case of an 
external leakage 𝑚̇𝑚L it is assumed to be redirected to the inlet of 
the pump or the outlet of a motor respectively as shown in 
FIGURE 1. Due to environmental constraints, real external 
leakage is unlikely. 

 
𝑀𝑀S
𝑛𝑛

𝑚̇𝑚ℎt,2

𝑚̇𝑚L

𝑚̇𝑚ℎt,1

PUMP MOTOR

𝑀𝑀S
𝑛𝑛

𝑚̇𝑚ℎt,2

𝑚̇𝑚L

𝑚̇𝑚ℎt,1

 
FIGURE 1: FIRST LAW OF THERMODYNAMICS FOR AN 
ADIABATIC POSITIVE DISPLACEMENT PUMP AND MOTOR. 

 
The commonly used efficiency definition for positive 

displacement machines is the isentropic efficiency. In fact, this 
efficiency definition is used for all machines, turbo machines or 
positive displacement machines with a compressible flow or an 
incompressible flow, as long as the machine operates 
adiabatically. Considering an adiabatic machine, the isentropic 
efficiency 𝜂𝜂 is defined as the ratio of the product of mass flow 
and mass-specific isentropic and total enthalpy difference 𝛥𝛥ℎt,s 
and the shaft power 

 

𝜂𝜂 ∶= �
𝑚̇𝑚𝛥𝛥ℎt,s
𝑃𝑃S

�
±1

. (2) 

 
The exponent +1 applies to pumps, the exponent – 1 applies 

to motors. While the following sections focus on pumps, the 
described procedure can be applied on motors similarly.  

Dividing the mass-specific total enthalpy difference 𝛥𝛥ℎt 
into the isentropic fraction 𝛥𝛥ℎt,s and the loss fraction ℎl, we 
obtain the following representation of the isentropic efficiency 

 

𝜂𝜂 ∶= 1 −
𝑚̇𝑚ℎl
𝑃𝑃S

. (3) 

 
Equation (3) illustrates that the efficiency is a measure of 

the dissipative power losses 𝑃𝑃loss = 𝑚̇𝑚ℎl. 
Given an approximately incompressible flow and an ideally 

rigid machine, the total enthalpy ℎt is 
 

ℎt =
𝑝𝑝
𝜚𝜚

+
𝑢𝑢2

2
+ 𝑔𝑔𝑔𝑔 + 𝑒𝑒, 

(4) 

𝜚𝜚ℎt = 𝑝𝑝 + 𝜚𝜚
𝑢𝑢2

2
+ 𝜚𝜚𝜚𝜚𝜚𝜚 + 𝜚𝜚𝜚𝜚 

 

equation (2) leads to the ISO 4391:1984 efficiency 
definition (the difference of kinetic energy 𝑢𝑢2/2 and potential 
energy 𝑔𝑔𝑔𝑔 are neglected). 

 

𝜂𝜂 ∶=
Δ𝑝𝑝𝑝𝑝
𝑃𝑃S

=
Δ𝑝𝑝𝑝𝑝

2𝜋𝜋𝑀𝑀S𝑛𝑛
, (5) 

 
with the pressure difference Δ𝑝𝑝 and the volume flow 𝑄𝑄. 

Extending equation (5) with the displacement volume 𝑉𝑉, the 
efficiency can be written as the product of the volumetic 
efficiency 𝜂𝜂vol and the mechanical-hydraulic efficiency 𝜂𝜂mh  

 

𝜂𝜂 = 𝜂𝜂vol𝜂𝜂mh, 𝜂𝜂vol ∶=
𝑄𝑄
𝑛𝑛𝑛𝑛

, 𝜂𝜂mh ∶=
Δ𝑝𝑝𝑝𝑝

2𝜋𝜋𝑀𝑀S
. (6) 

 
The displacement volume needs to be determined 

experimentally on the basis of Toet’s method [12]. 
In the case of high pressure differences, the mass-specific 

isentropic internal energy difference Δ𝑒𝑒s must not be neglected 
which represents the converted energy due to compression. 
Hence, the compressibility of the fluid needs to be taken into 
account. At this point, we make the following two assumptions: 

(i) The compression and decompression of the fluid is 
isentropic (𝑠𝑠 = const) and can be described using 
an averaged isentropic bulk moduls 𝐾𝐾�S or averaged 
isentropic compressibility 𝜅̅𝜅 = 1/ 𝐾𝐾�S.  

(ii) The relation between volume 𝑉𝑉 or density 𝜚𝜚 and 
pressure 𝑝𝑝 of a fluid 
 

𝜅̅𝜅 ∶= −
1
𝑉𝑉

d𝑉𝑉
d𝑝𝑝

|𝑠𝑠 =
1
𝜚𝜚

d𝜚𝜚
d𝑝𝑝

|𝑠𝑠 (7) 

 
is linearized and yields  
 

𝜅̅𝜅 ≈ −
1
𝑉𝑉
Δ𝑉𝑉
Δ𝑝𝑝

=
1
𝜚𝜚
Δϱ
Δ𝑝𝑝

. (8) 

 
As can be seen in section 3.2, these assumptions are not 

mandatory but can be easily extended by pressure dependent 
compressibility 𝜅𝜅(𝑝𝑝). However, the assumptions shorten the 
efficiency representations derived from the isentropic efficiency 
definition in equation (2), as can be seen in the next section. 
Furthermore, Ivantysyn und Ivantysynova [13] state that the 
resulting error due to linearization for common hydraulic fluids 
is negligible.  
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3. REPRESENTATIONS OF THE EFFICIENCY 
DEFINITIONS 
Based on the above assumptions, the next step is to 

determine the numerator of the isentropic efficiency definition in 
equation (2), which is the product of mass flow and the 
difference of the mass-specific isentropic enthalpy ∆ℎs (kinetic 
energy 𝑢𝑢2/2 and potential energy 𝑔𝑔𝑔𝑔 are neglected). In section 
3.1 we follow the common approach to determine the numerator 
based on an analysis of an ideal positive displacement machine’s 
cycle in the 𝑝𝑝-𝑉𝑉-diagram. Section 3.2 gives the same result, 
however, considering the more meaningful representation of the 
ideal cycle with intensive; i.e. mass-specific, quantities in the 𝑝𝑝-
𝑣𝑣-diagram. In section 3.3 we extend the equation of the 
isentropic efficiency definition with the effective displacement 
volume which leads to definitions of the volumetric efficiency 
and the mechanical-hydraulic efficiency. This step is discussed 
in the context of our understanding of an ideal positive 
displacement machine. 
 
3.1 Cycle of an ideal machine based on extensive 
quantities 

Firstly and for reasons of clarity, we focus on the isentropic 
enthalpy difference ∆𝐻𝐻s of the conveyed fluid mass per cycle, 
which is an extensive quantity. The isentropic enthalpy 
difference is equivalent to the energy transferred between an 
ideal machine and fluid per rotation. The time averaged mass 
flow 

 

𝑚̇𝑚 ∶=
1
𝑇𝑇
� 𝑚̇𝑚�(𝑡𝑡)d𝑡𝑡
𝑇𝑇

0
 (9) 

 
is given by the time integral of the temporal mass flow 𝑚̇𝑚�(𝑡𝑡) 

and the cycle time 𝑇𝑇 = 1 𝑛𝑛⁄ . Hence, the time averaged mass flow 
is the product of conveyed fluid mass per rotation 𝑚𝑚F and the 
rotational speed 𝑛𝑛 
 

𝑚̇𝑚 = 𝑛𝑛𝑚𝑚F. (10) 

 
This yields 

 
𝑚̇𝑚∆ℎs = 𝑛𝑛∆𝐻𝐻s. (11) 

 
FIGURE 2 shows the cycle of an ideal positive displacement 

pump, i.e. loss-free and ideally rigid, with a dead volume 𝑉𝑉d 
filled by a compressible fluid in a 𝑝𝑝-𝑉𝑉-diagram. The shaded area, 
given by the points abcd, states the isentropic enthalpy difference 
∆𝐻𝐻s and needs to be calculated in order to derive a meaningful 
efficiency representation based on the efficiency definition (2) 
and equation (11). The dead volume results from the design of a 
positive displacement pump and must be calculated on the basis 
of the geometric pump dimensions. The displacement volume 𝑉𝑉 
is determined experimentally at a pressure difference Δ𝑝𝑝 = 0  
(cf. [12]). 

bcc′ = 𝑉𝑉d + 𝑉𝑉d,e + 𝑉𝑉eff,1
𝜅𝜅Δ𝑝𝑝2

2

add′ = 𝑉𝑉d + 𝑉𝑉d,e
𝜅𝜅Δ𝑝𝑝2

2

abc′d′ = 𝑉𝑉eff,1Δ𝑝𝑝

abcd = abc′d′ − bcc′+ add′

          = Δ𝑝𝑝𝑉𝑉eff,1 1−
𝜅𝜅Δ𝑝𝑝

2

𝑉𝑉d 𝑉𝑉d,e
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d′  c
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abcd = 𝛥𝛥𝐻𝐻𝑠𝑠

𝑉𝑉eff,2

 
FIGURE 2: IDEAL CYCLE FOR A POSITIVE DISPLACEMENT 
PUMP WITH A DEAD VOLUME AND A COMPRESSIBLE FLUID. 

 
Beginning the ideal cycle at the top dead center, point d, and 

the pressure 𝑝𝑝2, the dead volume decompresses, d→a, before 
refilling the displacement chamber at the pressure level 𝑝𝑝1, d→a. 
The difference between the compressed and expanded dead 
volume is called 𝑉𝑉d,e. In the following, the fluid with the 
effective displacement volume 𝑉𝑉eff,1 flows into the displacement 
chamber, a→b. At the bottom dead center, point b, the total 
volume 𝑉𝑉t of the displacement chamber is 

 
𝑉𝑉t = 𝑉𝑉d + 𝑉𝑉 = 𝑉𝑉d + 𝑉𝑉d,e + 𝑉𝑉eff,1. (12) 

 
The effective displacement volume 𝑉𝑉eff,1 is given by 

 
𝑉𝑉eff,1 = 𝑉𝑉 − 𝑉𝑉d,e (13) 

 
and equation (8) yields 

 
𝑉𝑉d,e = 𝑉𝑉d𝜅̅𝜅|∆𝑝𝑝| . (14) 

 
Consequently, the effective displacement volume 𝑉𝑉eff,1 can 

be calculated from the experimentally determined displacement 
volume 𝑉𝑉, the geometrically calculated dead volume 𝑉𝑉d, the 
averaged isentropic compressibility 𝜅̅𝜅  and the pressure 
difference ∆𝑝𝑝 . This is of major importance, as the 
decompression of the dead volume and reduction of usable 
displacement volume Δ𝑉𝑉 = 𝑉𝑉d,e = 𝑉𝑉 − 𝑉𝑉eff,1 does not cause 
volumetric losses or dissipation of energy. Instead, it underlines 
the effective Volume 𝑉𝑉eff,1 being the relevant geometric quantity 
in the partial efficiencies, the volumetric and mechanical-
hydraulic efficiency. 

Further on, the total volume is compressed to the pressure 
level 𝑝𝑝2, b→c,  and displaced from of the displacement chamber 
until the top dead center is reached again, c→d. 
  



 5 © 2021 by ASME 

The isentropic enthalpy difference ∆𝐻𝐻s (abcd) can now be 
calculated from the following areas, each described by its corner 
points  

 
abcd = abc′d′ − bcc′ + add′. (15) 

 
Each area can be easily calculated based on the edge lengths. 

These correspond to the pressure difference ∆𝑝𝑝, the effective 
displacement volume 𝑉𝑉eff,1 and the volume difference due to 
compression, b→c, or expansion, d→a, calculated with 
equation (8). At this point, it must be emphasized that the 
compression, b→c and expansion, d→a can only be calculated 
under the assumption of a closed control volume and, thus, a 
constant mass. The results for the different areas are 

 
abc′d′ = ∆p𝑉𝑉eff,1 , 

(16) 
bcc′ = �Vd + Vd,e + 𝑉𝑉eff,1�

𝜅̅𝜅∆𝑝𝑝2

2
 , 

add′ = �Vd + Vd,e�
𝜅̅𝜅∆𝑝𝑝2

2
. 

 
The area add′ = ada′ is calculated from the perspective of 

compressing the decompressed dead volume 𝑉𝑉d + 𝑉𝑉d,e, a→d.     
In this way, the compression energy can be represented by       
Vd + Vd,e. Since the compression or decompression is assumed 
to be isentropic, the absolute value of the converted mechanical 
energy is equal, a→d = d→a. However, due to the assumption 
made, namely the linearized relation in equation (8), there is a 
deviation between expansion and compression: 
 

 
area add′ 
expansion (d→a) =

𝑉𝑉d𝜅̅𝜅∆𝑝𝑝2

2
, (17) 

 

 
area add′ 
compression (a→d) =

�𝑉𝑉d + 𝑉𝑉d,e�𝜅̅𝜅∆𝑝𝑝2

2
. (18) 

 
This deviation results from the linearization error which is 

negligible for the range of practical pressures and therefore not 
considered any further. Equations (15) and (16) now leads to the 
isentropic enthalpy difference ∆𝐻𝐻S of the conveyed fluid mass  
𝑚𝑚eff = 𝑉𝑉eff,1𝜚𝜚1 per rotation 

 

abcd =  ∆𝑝𝑝𝑉𝑉eff,1 �1 −
𝜅̅𝜅∆𝑝𝑝

2
� .  (19) 

 
Equation (19) gives a short, meaningful and physically 

consistent representation of the isentropic enthalpy difference 
which can be used for the efficiency representation based on the 
definition in equation (2). Before that, we derive the same result 

based on the mass specific isentropic enthalpy, which is an 
intensive quantity. 
 

3.2 Cycle of an ideal machine based on intensive 
quantities  

The ideal cycle on the basis of the mass-specific volume 
presented in FIGURE 3 leads to the mass-specific enthalpy. The 
mass-specific representation is advantageous since it allows the 
determination of the mass-specific isentropic enthalpy difference 
which can be used directly for the definition of the efficiency (cf. 
equation (2)). The mass-specific isentropic enthalpy difference 
from state 1 to 2 yields 
 

∆ℎ𝑠𝑠 = � 𝑣𝑣d𝑝𝑝 ≈
∆𝑝𝑝
𝜚𝜚1
�1 −

𝜅̅𝜅∆𝑝𝑝
2
� .

2

1
  (20) 

 
As can be seen, the introduction of the displacement volume is 
not necessary.  

Equation (19) can also be derived from the mass-specific    
𝑝𝑝-𝑣𝑣-diagram shown in FIGURE 3. One obtains the isentropic 
enthalpy difference ∆𝐻𝐻s (abcd) by multiplying the corresponding 
fluid masses of the dead volume 𝑚𝑚d and the effectively conveyed 
volume 𝑚𝑚eff = 𝜚𝜚1𝑉𝑉eff,1  

 
abcd = ∆𝐻𝐻s = (𝑚𝑚eff + 𝑚𝑚d)∆ℎs − 𝑚𝑚d∆ℎs 

= 𝑚𝑚eff∆ℎs  

=  ∆𝑝𝑝𝑉𝑉eff,1 �1 −
𝜅̅𝜅∆𝑝𝑝

2
� . 

(21) 

   

Δℎs = � 𝑣𝑣d𝑝𝑝
2

1
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2
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FIGURE 3: MASS-SPECIFIC 𝑝𝑝-𝑣𝑣-DIAGRAM FOR AN IDEAL 
POSITIVE DISPLACEMENT PUMP AND A COMPRESSIBLE 
FLUID. 

At the same time, it is obvious that the mass-specific 
isentropic enthalpy difference based on equation (20) can also be 
calculated with a non-linearized relationship of pressure and 
density (cf. equation (7)) and a pressure dependent 
compressibility 𝜅𝜅(𝑝𝑝). 

 
 



 6 © 2021 by ASME 

3.3 Efficiency representations 
Following the efficiency definition according to 

definition (2) and equation (20) one obtains 
 

𝜂𝜂 ≔
𝑚̇𝑚∆ℎs

2𝜋𝜋𝑀𝑀S𝑛𝑛
=  

𝑄𝑄1∆𝑝𝑝
2𝜋𝜋𝑀𝑀S𝑛𝑛

�1 −
𝜅̅𝜅∆𝑝𝑝

2
�.  (22) 

 
The mass flow 𝑚̇𝑚 = 𝜚𝜚1𝑄𝑄1 is the product of the volume 

flow 𝑄𝑄1 and the density 𝜚𝜚1 at the pump inlet. Since the volume 
flow is usually measured at the pump outlet, the volume flow 𝑄𝑄1 
can be calculated with equation (8) by 

 

𝑄𝑄1 =
𝑄𝑄2

1 − 𝜅̅𝜅∆𝑝𝑝
.  (23) 

 
The derivation of representations of the partial efficiencies 

succeeds based on equation (22) and the introduction of the 
effective displacement volume 𝑉𝑉eff,1. Extending equation (22) 
with the effective displacement volume 𝑉𝑉eff,1 (cf. equation (13) 
and (14)) in the numerator and denominator, the isentropic 
efficiency yields 

 

𝜂𝜂 ≔  
𝑄𝑄1

𝑛𝑛𝑉𝑉eff,1
∆𝑝𝑝𝑉𝑉eff,1
2𝜋𝜋𝑀𝑀S

�1 −
𝜅̅𝜅∆𝑝𝑝

2
�. (24) 

 
Consequently, definitions of the volumetric efficiency  𝜂𝜂vol 

and the mechanical-hydraulic efficiency 𝜂𝜂mh can be given by 
 

𝜂𝜂vol ≔
𝑄𝑄1

𝑛𝑛𝑉𝑉eff,1
=

𝑄𝑄1∆𝑝𝑝 �1 − 𝜅̅𝜅∆𝑝𝑝
2 �

𝑛𝑛𝑉𝑉eff,1∆𝑝𝑝 �1 − 𝜅̅𝜅∆𝑝𝑝
2 �

 , 

𝜂𝜂mh ≔
∆𝑝𝑝𝑉𝑉eff,1
2𝜋𝜋𝑀𝑀S

�1 −
𝜅̅𝜅∆𝑝𝑝

2
� =

𝛥𝛥𝐻𝐻S
2𝜋𝜋𝑀𝑀S

 

(25) 

 
At this point, one must understand that this approach goes 

hand in hand with the idea of an ideal machine. The ideal 
machine is characterized by the effective displacement volume 
𝑉𝑉eff,1, the ideal volume flow 𝑄𝑄eff,1 = 𝑛𝑛𝑉𝑉eff,1 and the loss-free 
energy transferred between machine und fluid, i.e. the isentropic 
enthalpy 𝛥𝛥𝐻𝐻S = ∆𝑝𝑝𝑉𝑉eff,1 �1 − 𝜅𝜅�∆𝑝𝑝

2
�.  

Thereby, the volumetric efficiency represents the ratio of the 
volume flow at the inlet 𝑄𝑄1 to the ideal volume flow 𝑄𝑄eff,1. This 
is equivalent to the ratio of the hydraulic power of the conveyed 
fluid by the real machine to the hydraulic power of the conveyed 
fluid by the ideal machine. The mechanical-hydraulic efficiency 
represents the ratio of the loss-free energy transferred between 
ideal machine and fluid to the shaft work of the real machine 
during one rotation. 

 
 

Furthermore, this approach allows to calculate volumetric 
and mechanical-hydraulic losses. These losses are the difference 
between ideal and real machines behaviour and can be given in 
a physically consistent and meaningful way as follows: 

 
(i) The leakage 𝑄𝑄L = 𝑄𝑄eff,1 − 𝑄𝑄1 represents the difference 

between the effective or ideal volume flow 𝑄𝑄eff,1 = 𝑛𝑛𝑉𝑉eff,1 
and the measured volume flow at pump inlet 𝑄𝑄1. Hence, the 
leakage causes the power loss 𝑃𝑃loss,L = ∆𝑝𝑝𝑄𝑄L �1 − 𝜅𝜅�∆𝑝𝑝

2
�.          

FIGURE 4 shows the energy loss due to leakage as a 
marked area (𝑏𝑏′𝑏𝑏𝑏𝑏𝑏𝑏′) in a 𝑝𝑝-𝑉𝑉-diagramm. This is the energy 
transferred to the fluid volume 𝑉𝑉L = 𝑉𝑉eff,1 − 𝑄𝑄1/𝑛𝑛 and 
which is lost due to leakage. This representation is based on 
the idea that, in the case of a pump, leakage occurs after the 
energy is transferred from machine to the fluid. It does not 
matter if the real machine’s leakage behavior is different as 
the leakage is a calculated quantity based on the ideal 
volume flow. Furthermore, it is consistent with our 
approach assuming a closed control volume for the 
compression and expansion presented in FIGURE 2. 
 

(ii) The friction torque 𝑀𝑀mh = 𝑀𝑀S −𝑀𝑀hyd resulting from 
friction and momentum losses of the conveyed fluid is 
calculated from the difference of shaft torque 𝑀𝑀S and 
hydraulic torque 𝑀𝑀hyd = 𝛥𝛥𝐻𝐻S

2𝜋𝜋 
= ∆𝑝𝑝𝑉𝑉eff,1

2𝜋𝜋 
�1 − 𝜅𝜅�∆𝑝𝑝

2
�. This 

results in the power loss 𝑃𝑃loss,mh = 2𝜋𝜋𝑀𝑀mh𝑛𝑛. Similar to the 
leakage, the friction torque is a calculated quantity based 
on the loss-free energy, i.e. the isentropic enthalpy 𝛥𝛥𝐻𝐻S, 
transferred between ideal machine and fluid. 
 

abcd = Δ𝑝𝑝𝑉𝑉eff,1 1−
𝜅𝜅Δ𝑝𝑝

2

PR
ES
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R
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𝑝𝑝2

𝑝𝑝1

Δ𝑝𝑝

  a   b

  d  c
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𝑉𝑉eff,1
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 c‘

𝑉𝑉L

b′bcc′ = Δ𝑝𝑝𝑉𝑉L 1−
𝜅𝜅Δ𝑝𝑝

2

 
FIGURE 4: ENERGY LOSS DUE TO LEAKAGE REPRESENTED 
IN A 𝑝𝑝-𝑉𝑉-DIAGRAM. 
 

Equations (22) and (25) provide representations of the 
overall efficiency, the volumetric and the mechanical-hydraulic 
efficiency which measure the energetic quality of positive 
displacement pumps with a dead volume in a physically 
consistent and meaningful way. At the same time, these partial 
efficiencies can also be quantified based on the volumetric 
losses 𝑄𝑄L and the friction torque 𝑀𝑀mh  

𝜂𝜂vol ≔ 1 −
𝑄𝑄L

𝑛𝑛𝑉𝑉eff,1
 , (26) 
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𝜂𝜂mh ≔
1

1 + 2𝜋𝜋
1 − 𝜅̅𝜅 ∆𝑝𝑝 2⁄

𝑀𝑀mh
∆𝑝𝑝𝑉𝑉e

 

 
If the dead volume is negligibly small or the flow is 

approximately incompressible due to low pressure differences of 
the pump, the effective displacement volume 𝑉𝑉eff,1 and the 
experimentally determined displacement volume 𝑉𝑉 will be 
identical. Furthermore, 𝜅𝜅∆𝑝𝑝 ≪ 1 and the efficiency definitions 
of ISO 4391 according to equations (5) and (6) can be applied. 

 
4. COMPARISON OF EFFICIENCY  

REPRESENTATIONS IN THE LITERATURE 
As stated in the introduction the motivation of this paper is 

to contribute to the ongoing and fruitful discussion about 
meaningful and physically consistent efficiency representations 
of positive displacement machines with a dead volume and a 
compressible flow which was started at FPMC 2019 by Achten 
et. al [2].  

Against this background, the overall efficiency and partial 
efficiency representations derived in this paper are compared to 
the efficiency representations given by Achten et. al. and Li and 
Barkei [4]. TABLE 1 summarizes all efficiency representations 
in the notation of this paper considering a pump with one single 
displacement chamber. 

Achten et. al. make new proposals for the overall and the 
mechanical hydraulic efficiency. They also calculate the 
isentropic enthalpy Δ𝐻𝐻S from the ideal cycle of a positive 
displacement machine (cf. FIGURE 2) but derive a sightly 
different formula resulting in a different representation of the 
mechanical efficiency. This is due to the calculation of the area 
add′ (cf. FIGURE 2) from the perspective of an expansion (see 
equations (17) and (18)) and due to the linearization error. Hence, 
the differences for mechanical hydraulic efficiency 
representation are negligible. On the other hand, Achten et. al.’s 
definition of the overall efficiency is inconsistent with the 
definition of the mechanical hydraulic efficiency. They integrate 
the inner energy (see [2] equation (5)) under the assumption of a 
mean density 𝜚̅𝜚 which is approximately 𝜚̅𝜚 = 𝜚𝜚1 = 𝜚𝜚2 (see [2] 
equation (6)). This assumption is neither transparently presented 
nor consistent with their assumption of a pressure dependent 
density regarding the cycle of an ideal positive displacement 
machine (see [2] FIGRUE 2)). In fact, Achten et. al. consider the 
overall efficiency and the mechanical-hydraulic efficiency 
independently of each other in contrast to this paper. At the same 
time, they question the validity of a volumetric efficiency 
definition and, thus, do not provide one. A physically consistent 
volumetric efficiency definition that fulfills 𝜂𝜂 = 𝜂𝜂mh𝜂𝜂vol and 
that is based on the idea of an ideal and reference machine is not 
achievable due to their inconsistent integration of the inner 
energy. In summary, they apply the idea of an ideal machine in 
the context of their mechanical-hydraulic efficiency definition, 
but and in contrast to this paper not to the volumetric efficiency 
definition and volumetric losses. 

Li and Barkei give generally valid and consistent definitions 
of the overall efficiency, the volumetric and the mechanical 
hydraulic efficiency. These definitions contain their newly 
introduced quantity Φ which is the volume-specific enthalpy  

 

Φ ≔  
𝛥𝛥𝐻𝐻S
𝑉𝑉eff,2

. (27) 

 
In this way, they do not make any assumptions regarding the 

fluid properties, namely the compressibility of the fluid, e.g. by 
using an averaged bulk modulus or by linearizing the relation of 
pressure and density. However, this is why their approach results 
in efficiency representations that are slightly more difficult to 
understand. Regardless of this, Li and Barkei’s representations 
are identical to the representations derived in this paper when 
taking into account the assumptions made in section 2. 

 
5. CONCLUSION 

On the basis of the most general efficiency definition, 
namely the isentropic efficiency, transparent assumptions 
considering the fluid properties and the 𝑝𝑝-𝑣𝑣 diagram as well as 
the idea of an ideal and reference positive displacement machine, 
we derive physically consistent and meaningful representations 
of the overall, the volumetric and the mechanical-hydraulic 
efficiency. At the same time, these representations fulfill the 
requirements for a high acceptability, as they are easy to apply, 
practical for users, and based on a transparent deviation. These 
representations are consistent with the definitions of Li and 
Barkei [4] and may serve as a template for a revision of 
ISO 4391:1984 [1]. In particular, the use of the effective volume 
𝑉𝑉eff,1 (cf. equation (13) and (14)) is the basis of a short and 
meaningful efficiency representation. 
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TABLE 1:EFFICIENCY DEFINITIONS OF PUMPS. 

volumetric efficiency 
   

Achten et. al:  no definition 
   

Li and Barkei:  𝜂𝜂vol ∶=
𝑄𝑄1

𝑛𝑛𝑉𝑉eff,1
=

𝑄𝑄2
𝑛𝑛𝑉𝑉eff,2

 

   

this paper:  𝜂𝜂vol ∶=
𝑄𝑄1

𝑛𝑛𝑉𝑉eff,1
=

𝑄𝑄2
𝑛𝑛𝑉𝑉eff,2

 

   

mechanical-hydraulic efficiency  
   

Achten et. al:  𝜂𝜂mh ∶=
Δ𝑝𝑝𝑝𝑝

2𝜋𝜋𝑀𝑀S
�1 − Δ𝑝𝑝𝜅̅𝜅 �

1
2

+
𝑉𝑉d
𝑉𝑉
�� 

   

Li and Barkei:  𝜂𝜂mh ∶=
𝑉𝑉eff,2Φ(Δ𝑝𝑝, 𝑝𝑝1)

2𝜋𝜋𝑀𝑀S
 

  Φ(Δ𝑝𝑝, 𝑝𝑝1) ≔
1

𝑉𝑉eff,2
� 𝑉𝑉d𝑝𝑝
2

1
=
Δ𝐻𝐻S
𝑉𝑉eff,2

 

   

this paper:  𝜂𝜂mh ≔
∆𝑝𝑝𝑉𝑉eff,1
2𝜋𝜋𝑀𝑀S

�1 −
𝜅̅𝜅∆𝑝𝑝

2
� =

Δ𝐻𝐻S
2𝜋𝜋𝑀𝑀S

 

  =
∆𝑝𝑝𝑉𝑉eff,2
2𝜋𝜋𝑀𝑀S

(1 − 𝜅̅𝜅∆𝑝𝑝/2)
(1 − 𝜅̅𝜅∆𝑝𝑝)  

   

overall efficiency 
   

Achten et. al:  𝜂𝜂 ∶=
p2𝑄𝑄2 �1 + 𝑝𝑝2𝜅̅𝜅

2 � − 𝑝𝑝1𝑄𝑄1
2𝜋𝜋𝑀𝑀S𝑛𝑛

 

   

Li and Barkei:  𝜂𝜂 ∶=
𝑄𝑄2Φ(Δ𝑝𝑝, 𝑝𝑝1)

2𝜋𝜋𝑀𝑀S𝑛𝑛
 

   

this paper:  𝜂𝜂 ≔
∆𝑝𝑝𝑄𝑄1

2𝜋𝜋𝑀𝑀S𝑛𝑛
�1 −

𝜅̅𝜅∆𝑝𝑝
2
�  

  =
∆𝑝𝑝𝑄𝑄2

2𝜋𝜋𝑀𝑀S𝑛𝑛
(1 − 𝜅̅𝜅∆𝑝𝑝/2)

(1 − 𝜅̅𝜅∆𝑝𝑝)  
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4. First rebuttal of Christian Schänzle and Peter Pelz to the first review of Peter 
Achten and Robin Mommers Note_210805_Response_Review_AchtenEtAl (first 
rebuttal, received on August 5, 2021)  



Dear Peter Achten, 

Dear Robin Mommers, 

thank you very much for your structured and detailed review. We can see that a lot of effort was put 
into your review and that the topic is of major importance to you, as it is to us, too. We find your 
non-anonymized review courageous and in the spirit of an open and constructive discussion. We 
appreciate that very much. 

Nevertheless, different views come to light, which are inherent in science and have to be endured by 
the opposing position. This applies all the more to the topic of efficiency, since the efficiency is a 
defined quantity.  

At this point, it is important for us to name our three guiding principles that guide us in our 
argumentation: 

i. Definitions are never wrong. Instead, appropriate criteria for definitions are their 
meaningfulness, their physical consistency and their acceptance. For efficiency definitions to 
be accepted, they must be easy to apply, practical for users, and based on a transparent 
derivation. 

ii. The definition of partial efficiencies based on the extension of the isentropic efficiency 
definition with the displacement volume goes hand in hand with the idea of an ideal, i.e. 
loss-free, machine that is characterized by its displacement volume. This allows the 
calculation of the converted energy per rotation as well as the volume flow of an ideal 
machine, which are essential for the partial efficiencies. Thus, the partial efficiencies have a 
high practical value and provide a starting point to modeling the overall efficiency. Modeling 
succeeds on the basis of loss analysis, as systematically started by Wilson by means of 
tribology and fluid mechanics. 

iii. The idea of using an ideal machine as a reference is a proven and well-known approach. Four 
prominent examples demonstrate this: firstly, the considerations of Sadi Carnot on an ideal 
heat engine leading to the definition of Carnot's efficiency, secondly, the considerations of 
Betz on the upper limit of wind power for wind turbines, thirdly, the considerations of Pelz 
on the upper limit for hydropower in an open-channel flow and, fourthly, the considerations 
of Turing on an abstract machine based on mathematical model, i.e. the Turing machine. 

The acceptance of definitions is decided by a research and industry community, in the case of an 
efficiency definition finally by an ISO committee. There may be different views and opinions on the 
meaningfulness of definitions, e.g. the definition of volumetric efficiency, which may not be 
dispelled. However, there should be an agreement on the physical consistency, as this is based on 
axioms such as the first law, material laws such as a compressible fluid with an isentropic change of 
state and model assumptions or simplifications such as linearization. This provides a transparent 
argumentation on the basis of which the acceptance of a definition can be decided. This is the spirit 
in which our paper was written and, in this spirit, we are pleased to respond to your review. 
Moreover, you find our revised paper including yellow highlighting of the revised passages. 

 

 

Christian Schänzle and Peter Pelz 

  



Response to your introduction and consensus 

We agree with your motivation, your goals and with your view on model assumptions, as also 
transparently set out in our paper. Furthermore, we agree that the differences between your and our 
mechanical-hydraulic efficiency definition is due to the linearization error and, thus, the differences 
for mechanical hydraulic efficiency representation are negligible. 

However, we are very critical of one of your basic assumptions that we do not want to follow. In our 
opinion, this assumption reveals your inconsistent argumentation: 

Your derivation of the overall efficiency definition is inconsistent with the definition of the 
mechanical hydraulic efficiency. You integrate the inner energy (see your paper equation (5)) under 
the assumption of a mean density 𝜚̅𝜚 which is approximately 𝜚̅𝜚 = 𝜚𝜚1 = 𝜚𝜚2 (see equation (6)). This 
assumption is neither transparently presented nor consistent with your assumption of a pressure 
dependent density (or volume) regarding the cycle of an ideal positive displacement machine (see 
your paper figure 2)). If your argument of a negligible error is made for equation (7) we do not 
understand why this should not also apply to figure 2 and equation (13) in your paper? 

Whereas we define the partial efficiencies by extending the overall efficiency definition with the 
effective displacement volume, you consider the overall efficiency and the mechanical-hydraulic 
efficiency independently of each other. A consistent volumetric efficiency definition that fulfills 𝜂𝜂 =
𝜂𝜂mh𝜂𝜂vol and that is based on the idea of an ideal and reference machine is not achievable due to 
your inconsistent integration of the inner energy. 

Our commonly used approach extending the overall efficiency definition with the displacement 
volume goes hand in hand with the idea of an ideal machine. The ideal machine is characterized by 
the effective displacement volume 𝑉𝑉eff,1, the ideal volume flow 𝑄𝑄eff,1 = 𝑛𝑛𝑉𝑉eff,1 and the loss-free 

energy transferred between machine und fluid, i.e. the isentropic enthalpy 𝛥𝛥𝐻𝐻S = ∆𝑝𝑝𝑉𝑉eff,1 �1 −
𝜅𝜅�∆𝑝𝑝
2
�. Thereby, the volumetric efficiency represents the ratio of the volume flow at the inlet 𝑄𝑄1 to the 

ideal volume flow 𝑄𝑄eff,1. This is equivalent to the ratio of the hydraulic power of the conveyed fluid 
by the real machine to the hydraulic power of the conveyed fluid by the ideal machine. The 
mechanical-hydraulic efficiency represents the ratio of the loss-free energy transferred between 
ideal machine and fluid to the shaft work of the real machine during one rotation. 

This commonly used approach allows to calculate volumetric and mechanical-hydraulic losses. These 
losses are the difference between ideal and real machines behaviour and can be given in a physically 
consistent and meaningful way as follows: 

(i) The leakage 𝑄𝑄L = 𝑄𝑄eff,1 − 𝑄𝑄1 represents the difference between the effective or ideal 
volume flow 𝑄𝑄eff,1 = 𝑛𝑛𝑉𝑉eff,1 and the measured volume flow at pump inlet 𝑄𝑄1. Hence, the 

leakage causes the power loss 𝑃𝑃loss,L = ∆𝑝𝑝𝑄𝑄L �1 − 𝜅𝜅�∆𝑝𝑝
2
�. Figure 4 in our revised paper 

shows the energy loss due to leakage as a marked area (𝑏𝑏′𝑏𝑏𝑏𝑏𝑏𝑏′) in a 𝑝𝑝-𝑉𝑉-diagramm. This 
is the energy transferred to the fluid volume 𝑉𝑉L = 𝑉𝑉eff,1 − 𝑄𝑄1/𝑛𝑛 and which is lost due to 
leakage. This representation is based on the idea that, in the case of a pump, leakage 
occurs after the energy is transferred from machine to the fluid. It does not matter if the 
real machine’s leakage behavior is different as the leakage is a calculated quantity based 
on the ideal volume flow. Furthermore, it is consistent with the approach assuming a 
closed control volume for the compression and expansion considering the ideal cycle 
(see figure 2 in your and our paper). 
 



(ii) The friction torque 𝑀𝑀mh = 𝑀𝑀S −𝑀𝑀hyd resulting from friction and momentum losses of 
the conveyed fluid is calculated from the difference of shaft torque 𝑀𝑀S and hydraulic 

torque 𝑀𝑀hyd = 𝛥𝛥𝐻𝐻S
2𝜋𝜋 

= ∆𝑝𝑝𝑉𝑉eff,1
2𝜋𝜋 

�1 − 𝜅𝜅�∆𝑝𝑝
2
�. This results in the power loss 𝑃𝑃loss,mh =

2𝜋𝜋𝑀𝑀mh𝑛𝑛. Similar to the leakage, the friction torque is a calculated quantity based on the 
loss-free energy, i.e. the isentropic enthalpy 𝛥𝛥𝐻𝐻S, transferred between ideal machine 
and fluid. 
 

In our understanding, you apply the idea of an ideal machine in the context of your mechanical-
hydraulic efficiency definition, but and in contrast the common approach not to the volumetric 
efficiency definition and volumetric losses. 

 

Response to Differences 

To 1.: Our consideration is valid for all pumps and motors, also with external drainage, as can be seen 
in our figure 1 and our chosen system boundary.  

To 2.: Your argumentation is from a standpoint of an application. The efficiency definition is from a 
standpoint of a standardized procedure under standard conditions. A higher pressure at the inlet is 
possible, the question is whether this must be considered for the standardized efficiency 
measurements. Nevertheless, we see no limitation for our consideration. 

To 3.: Please see “Response to introduction and consensus”. Our understanding of the losses is 
different to your understanding. Losses can only be calculated when we have an idea of an ideal and 
reference machine. The losses are the difference between real machine behaviour and ideal machine 
behavior. Your standpoint only focuses on real machine behaviour and on details which may be 
correct but neglect the fact that the losses depend on the ideal machine bahaviour as well. 

To 4.: see “Response to introduction and consensus”. 

To 5.: see “Response to comments 15-17” and “Response to introduction and consensus”. 

To 6: Please consider equations (20) and (21) as well as figure 3 in our revised paper. In our opinion, 
the mass-specific representation of the ideal cycle is more meaningful and a discussion of 
linearization errors become superfluent. One can argument based on the fluid masses of the dead 
volume and the conveyed fluid. 

 

Response to Comments 

To 1.: 𝑉𝑉eff can be determined as stated in our revised paper by equations (13) and (14). 

To 2.: No. We prefer our representations of the partial efficiency definitions based on 𝑉𝑉eff because in 
our opinion they are shorter and more meaningful. This is illustrated by equations (20) and (21) as 
well as Figure 3. 

To 3.: Your suggested equation is similar to ours. In our consideration 𝑚̇𝑚1 und 𝑚̇𝑚2 are equal due to 
our chosen system boundary (see Figure 1). We do not see a benefit in your suggested equation. In 
addition, the challenge becomes apparent when 𝑚̇𝑚1 und 𝑚̇𝑚2 are not equal. A calculation of the mass-
specific internal energy difference Δ𝑢𝑢 requires the assumption of a constant mass and a closed 
control volume. You solve this challenge introducing a mean density which is inconsistent with your 
consideration of the ideal cycle. 



To 4.: Thank you for this comment, we corrected this notation. 

To 5.: It is possible, but we aim at a representation of Δ𝐻𝐻𝑠𝑠 based on 𝑉𝑉eff. This is shown in figure 2 as 
well as figure 3. In our opinion, in particular figure 3 makes it easy to understand why 𝑉𝑉eff is the more 
meaningful quantity. 

To 6.: No, we do not agree. Your introduction of a mean density is not transparent and you do not 
give an equation to calculate the mean density. Furthermore, it is not consistent with the 
consideration of the mechanical hydraulic efficiency. Even if the assumption of a mean density only 
leads to slight deviations, it results in inconsistent representations of the overall and mechanical 
hydraulic efficiency. 

To 7.: Yes. 

To 8. We prefer our representation of abcd. 

To 9.: A definition is never wrong or impossible. We present our understanding of the volumetric 
efficiency and volumetric losses in detail in our revised paper and above (see “Response to 
introduction and consensus”). The definition of volumetric losses and of a volumetric efficiency in the 
context of the idea of an ideal and reference positive displacement machine is consistent with our 
understanding of the mechanical hydraulic efficiency. 

To 10.: see 9  

To 11.: see “Response to introduction and consensus” and 3.  

To 12.: see “Response to introduction and consensus” 

To 13.: see “Response to introduction and consensus”. Furthermore, we do not assume a mean 
density (see equation (7) und (8) in our paper) 

To 14.: see “Response to introduction and consensus”.  

To 15 - 17.: We do not mention the addressed statements anymore. They had been referred to your 
statement questioning the validity of the volumetric efficiency. For the rotary positive displacement 
pump manufacturers we cooperate with, the volumetric efficiency is more important than the 
mechanical hydraulic efficiency especially at a low fluid viscosity. Furthermore, the customer is 
usually interested in the volume flow for his application. This information is given by the volumetric 
efficiency. 

To 18. See 1. and 2. 

To 19.: see 9. 

To 20. Yes. We make this statement in our revised paper. 

To 21.: We do not see a mistake in our approach. 

To 22.: Please consider our argumentation. Firstly, we specify the system boundary and apply the 
first law of thermodynamics, secondly, we define the overall efficiency that is consistent with the 
isentropic or adiabatic efficiency (commonly applied to all kinds of fluid energy machines), thirdly, we 
make assumptions concerning the fluid, fourthly, we extend the overall efficiency definition with the 
effective displacement volume. This fourth step goes hand in hand with the idea of an ideal and 
reference machine as discussed above (see “Response to introduction and consensus”). Your 
approach defining the mechanical hydraulic efficiency is also based on this idea. Whereas you follow 
this idea only for the definition of the mechanical hydraulic efficiency, we apply this idea also to the 



volumetric efficiency definition. Moreover, our view on the partial efficiencies results from the 
overall efficiency definition whereas you consider the overall and the partial efficiency independently 
of each other. 



5. Comment on mass density (send by Robin Mommers on August 6, 2021 to the 
authors)  



The following contains an explanation of the derivations that are shown in “Achten et al. (2019) 
Measuring the losses of hydrostatic pumps and motors: A critical review of Iso4409:2007”. 
Equation numbers are references to the equations in this paper. This explanation concerns eq.(1)-
(7), and focuses on the mass density of the hydraulic oil.


Presented method 
From eq.(1)-(3), it follows that we are looking for a definition of , which describes the specific 
internal energy of oil in state  (with  = 1 or  = 2 in this case). This definition is found to be the 
differential function shown in eq.(4) which is integrated in eq.(5). 


Since we need a second state to calculate this integral, we choose a state at which the energy is 
known to be very low (state 0 with  = 0 bar). For simplicity, we indeed assume that the mass 
density in this integral is constant, but not to a mean density, but the mass density in state . So 
perhaps, a clearer way to write eq.(5) is the following form:


	 	 	 	 	 	 	 (a)


In other words, we use a different mass density for oil from state 1 and state 2. As you mentioned, 
this indeed is not perfectly accurate, but we think it results in a decent estimation of the internal 
energy. Substitution into eq.(3), cancels the mass densities  and , which results in eq.(6).


Alternative 
More accurate would be to include changes in the density in the integral of eq.(5), as you 
mentioned. From the assumption that we have a constant bulk modulus , compressing a 
volume between state 1 and state 2 can be described as:


	 	 	 	 	 	 (b)


with  the volume at pressure , and  the volume once  is compressed to . Using mass 
densities at the two states and the fact that we have a constant mass, we get:


	 		 	 	 (c)


Suppose that at state 0, the pressure  = 0 bar, and the mass density equals . We get the 
following function for the mass density at pressure p:


	 	 	 	 	 	 	 	 	 	 (d)


The internal energy integral from state 0 to state , as shown in eq.(a) above, now results in the 
following:


	 	 	 	 (e)


Since we assumed  = 0 bar, this results in:


	 	 	 	 (f)
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The function of  shown in eq.(f), looks a lot like the function of  we found in eq.(f). The 
difference is found to be:


	 	 	 	 	 	 	 	 	 	 	 (g)


Following the same reasoning as in paper, this results in the following simplified function for the 
hydraulic power:


	 	 	 	 	 (h)


If we compare this factor  to the  factor set in the paper in eq.31, and we assume an 
isentropic bulk modulus of 1.76e9 Pa, we get difference of less than 0.015% at 500 bar, as is 
shown in the following graph. 


In our opinion, this difference is so small that it justifies using mass densities  and , instead of 
more realistic functions. 
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6. Response by Peter Achten and Robin Mommers to the first rebuttal: 
’note_210805_Response_Review_AchtenEtAl’ (send on August 13, 2021 to the 
organizers of the FPMC and to the authors)  



Response to 
‘note_210805_Response_Review_AchtenEtAl’ 

We will only respond to the main points:


1. “Definitions are never wrong” (pag 1), “A definition is never wrong or impossible” (pag. 4)


2. We are (physically) not consistent in our approach for determining the overall efficiency.


3. We assume the density to be constant 


4. Because of this inconsistency, we are not able to define a volumetric efficiency


Comments to point 1


In principle, these are correct statements: you can make any definition, as long as you are clear about 
the parameters and their meaning. For instance, you can define an efficiency ratio of the number of 
storks in a country and the number of babies born in a year. In 2019 there were about 2350 storks in 
the Netherlands. In that same year, 167.588 babies were born in the Netherlands. That is an amazing 
‘efficiency’ of 71 babies per stork. Not that this is relevant, but yes, you could theoretically make such 
an efficiency definition. This efficiency is a ‘defined quantity’ and it is ‘easy to apply, practical for users, 
and based on a transparent derivation’.


But that is of course not the point. We started this discussion because we believe the current ISO-
definitions need a revision, resulting in better, physically consistent definitions. In our 2019-paper we 
write: 


“ISO 4409 is inconsistent in the calculation of the effects of oil compressibility: while it requires 
consideration for oil compressibility in the flow rates, it does not demand the same correction for 
the efficiency definition”


Because of this inconsistency, the current efficiency definitions result in the possibility that the 
efficiency can become larger than 1 (or 100%), which would imply that the pump or motor would have 
a negative loss. We believe we both agree that in that case, the definition is wrong, despite your remark 
that ‘definitions are never wrong’.


Also in your comments, as well as in your paper, you often mention the need for (physical) consistency. 
According to you, our analysis is inconsistent i.e. wrong. Also here, the discussion is simply about 
good or wrong definitions, for which ‘consistent’ and ‘inconsistent’ are mere euphemisms.


Also in your paper, you write


“However, the overall efficiency definition and the definitions of the partial efficiencies, namely the 
volumetric efficiency and mechanical-hydraulic efficiency are physically consistent only for an 
incompressible flow with the density 𝜚=const. If the machine operates at high pressure levels the 
compressibility of the fluid and the dead volume of a pump must be taken into account. On this 
point, ISO 4391:1984 is physically inconsistent.”


But that is only part of the problem. The other problem with the current ISO-definitions is that part of 
the energy which is compressed and delivered by the pump is actually leaving the pump in the form of 
a compressed oil flow. In motors, this compressed oil flow is received as an extra energy input. The 
pump and motor cycles are therefore not closed cycles, but they are open. More about that later.
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Comments to point 2


On page 2 you write:


“Your derivation of the overall efficiency definition is inconsistent with the definition of the 
mechanical hydraulic efficiency. You integrate the inner energy (see your paper equation (5)) 
under the assumption of a mean density 𝜚̅ which is approximately 𝜚̅ = 𝜚1= 𝜚2 (see equation (6)). 
This assumption is neither transparently presented nor consistent with your assumption of a 
pressure dependent density (or volume) regarding the cycle of an ideal positive displacement 
machine (see your paper figure 2)). If your argument of a negligible error is made for equation (7) 
we do not understand why this should not also apply to figure 2 and equation (13) in your 
paper?”


However, as we have mentioned in our review, our definition of the overall efficiency is nearly identical 
to yours. To repeat our earlier remarks (we have renumbered the equations in order to make a new 
sequence for this document):


Furthermore your equation for the overall efficiency can be rewritten as follows:


(1)

This is rather similar to our equation:


(2)

If, for the moment, we ignore the fact that we split p2 and p1, whereas you consider the pressure 
difference ∆p, than our correction term is:


(3)

whereas yours is:


 (4)

Again using the parameters mentioned in Eq(6), our correction factor has a value of 1,0120 and 
yours of 1,0123, a difference of 0,0003.


We used the following values:


(5)

 In your current paper you need to substitute eq. 23 into eq.24 to get the same as the above equation 
(7). This shouldn’t come as a surprise. We follow the same path as you do. We still disagree that you 
assume ∆pQ = p2Q2 – p1Q1 (more about in our comments on point 4) but aside from this, the result is 
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nearly identical. Which means that our, according to you ‘inconsistent’ approach results in the same 
value as your ‘consistent’ approach, which can be considered remarkable.


Comments to point 3


This seems to have become the core of your comment to our analysis. As you write in section 4 of your 
paper:


“On the other hand, Achten et. al.’s definition of the overall efficiency is physically inconsistent. 
They integrate the inner energy (see [2] equation (5)) neglecting the pressure dependent density 𝜚. 
Consequently, this leads to a physically inconsistent result of the hydraulic power as well which is 
the nominator of the overall efficiency.“


However, we believe you misunderstand our analysis at this point. As was also explained in more detail 
in the e-mail we sent on August 6th, when going from eq.5 to eq.6 we don’t use a constant mass 
density. We use eq.5 to estimate the amount of internal energy at a certain state . Since we need to 
compare the energy level to another state, we choose a state at which the energy is known to be very 
low (state 0 with p0 = 0 bar). For simplicity, we indeed assume that the mass density in this integral is 
constant, but not to the mass density in state 0, but the mass density in state i:


(6)

This indeed is not perfectly accurate, but we think it is a decent estimation of the internal energy. If we 
implement this into eq.3 of our 2019-paper, the mass densities cancel out, which results in eq.6. More 
accurate would be to include changes in the density in the integral of eq.5 as you mentioned, but that 
would only result in a very small change of the end result, which we think can be neglected. It should 
also be noted that you do the same in your analysis.


You could have seen from our equations that we are not assuming the density to be constant. 
Otherwise we wouldn’t need the bulk modulus and we couldn’t have an isentropic compression and 
expansion in the ideal cycle. Like you do, in eqs.7 and 8 in your paper, we assume the relation between 
volume 𝑉 or density 𝜚 and pressure 𝑝 of a fluid to be described by the bulk modulus, which implies that 
the density is by definition variable. This still leaves room for differences in the choice of the reference 
volume (Veff in your case versus V in our paper), but that doesn’t change the end result, as has been 
made clear before.


Comments to point 4

This is another important point in your paper. At the end of your paper, in section 4, you write


“A physically consistent volumetric efficiency definition that fulfils 𝜂 = 𝜂mh 𝜂vol and that is based on 
the idea of an ideal and reference machine is not achievable due to their inconsistent integration 
of the inner energy. In summary, they apply the idea of an ideal machine in the context of their 
mechanical-hydraulic efficiency definition, but and in contrast to this paper not to the volumetric 
efficiency definition and volumetric losses.”


However, in our 2019-paper we write:
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“It should be noted, that the definition for the volumetric efficiency is not based on energy or 
power levels, but compares flow rates. In order to calculate a volumetric efficiency based on 
power or energy, both the measured and the theoretical flow could be multiplied with a pressure, 
but then the question is which pressure level should be used for the numerator and for the 
denominator. Any choice would be an arbitrary choice, and may question the validity of the 
definitions.”


Furthermore, in our review of you paper, we write:


“We didn’t provide a definition of the volumetric efficiency because we couldn’t find a definition 
which was physically consistent with the inner processes in hydrostatic pumps and motors. You 
can make and define a flow ratio, but that is not the same as a power or energy ratio (which was 
the topic of our paper). 


The fact that we didn’t come up with a definition of the volumetric efficiency has nothing to do 
with our definition of the overall efficiency. After all, in theory, it could be possible to make an 
equation in which our overall efficiency is divided by our definition of the hydro-mechanical 
efficiency, which would then result in a ‘volumetric efficiency’ which fulfils 𝜂=𝜂mh 𝜂vol. But this 
would not make any sense due to the reasons mentioned before.”


Trying to come to a consensus in this discussion, we listen and read your comments with great care. 
We believe it would help us both, if you would carefully read the above statements and respond to 
them.


We believe we have reached a consensus about the hydraulic-mechanical losses and efficiency 
definitions. As you also mention in your response to our review:


“the differences for mechanical hydraulic efficiency representation are negligible."  


We also believe we have reached a consensus about the calculation of the overall losses and efficiency 
definitions, although you still seem to rescind this. But, as mentioned before, we can’t see any 
fundamental differences between your analysis and ours. The differences in the numerical end results 
are negligible and are due to different points of linearisation.


However, we believe you are making a mistake when you believe that all volumetric losses originate 
from the same ∆p: the pressure difference between the high pressure side and the low pressure side of 
the pump or motor.


In your paper (Fig. 1) you consider the same mass flow and the entrance and exit:


In order to fulfil this balance you assume that all volumetric losses inside the pump or motor will 
eventually end up at the low pressure side of the pump. In reality, this means that you need a 
pressurised case or housing, otherwise, the internal leakage will not flow to the low pressure side. 
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However, then you neglect the reality that many pumps and motors don’t have an internal case drain, 
but instead an external case drain. And also that in many applications, for instance in all hydrostatic 
drives, the low pressure is substantially higher than the case pressure. In these pumps, the leakage in 
the housing must be directed to the external drain.


As a result, it is no longer true that the mass flow at the exit equals the mass flow at the entrance, as 
you show in Figure 1 of your paper. In your comments on our review you write:


“Your argumentation is from a standpoint of an application. The efficiency definition is from a 
standpoint of a standardized procedure under standard conditions. A higher pressure at the inlet 
is possible, the question is whether this must be considered for the standardized efficiency 
measurements. Nevertheless, we see no limitation for our consideration.”


The answer to your question is confirmative: yes, of course you need to consider how the pumps and 
motors are applied. The standards should reflect the reality, not the other way around. However, this is 
what you do when you write:


“In our consideration 𝑚̇1 und 𝑚̇2 are equal due to our chosen system boundary (see Figure 1). We 
do not see a benefit in your suggested equation. In addition, the challenge becomes apparent 
when 𝑚̇1 und 𝑚̇2 are not equal.”


You want your definitions to be:


“…valid for all pumps and motors, also with external drainage, as can be seen in our figure 1 and 
our chosen system boundary”


It should be clear by now that this is not possible, following your analysis.


An other consequence of the external leakage drain in many pumps and motors, is that the leakage 
can come from both the high pressure side and the low pressure side. This is especially relevant for 
closed circuit pump and motors, in which the low pressure is around 20 bar, and the case pressure 
around 0 bar. Please, explain to us how you can tell where the measured leakage is coming from? We 
can’t, which was one of the reasons why we decided not to make a volumetric efficiency definition.


Conclusion


Considering the discrepancies and the lack of sufficient answers and responses to our first review, we 
believe we need more time to finalise our discussion. We will be more than happy to continue the 
debate and are open for any additional comments from your side.


The paper in its current form does not deserve the mark of a peer reviewed paper, at least not having 
us as reviewers. We will therefore inform the organisers of the FPMC2021, and advice them to 
withdraw your contribution from the 2021 conference.


We have reached consensus about several points:


1. We both agree that there is need for a revision of the current efficiency definitions for pumps and 
motors, as defined in ISO-standards;


2. We both come to about the same definition for the hydraulic-mechanical efficiency. The differences 
are negligible.


Then there is a point where we (the reviewers) are certain that we reached a consensus, but you 
completely and strongly disagree:
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3. We (the reviewers) also believe that we have reached the same level of consensus about the overall 
efficiency and loss definitions. We regret that you don’t share this conclusion in your last paper. We 
also regret that you didn’t respond to the content of our numerical example as mentioned in our 
review (which is repeated again in this second review (see the comments to point 2).


Finally we continue to have a disagreement about the definition of the volumetric efficiency.


4. Contrary to your statements we decided not make a definition of the volumetric efficiency because 
there is not a method to assess the pressure level from which the leakage originates. You consider 
all leakage to originate from the high pressure side. That is not the reality for a large group of 
pumps and motors.


August 13, 2021

Peter Achten and Robin Mommers (INNAS)


PS: One last word about point (iii) in the introduction of your paper. If you are looking for a Carnot-like 
maximum boundary of the efficiency of a pump or motor, then the answer is simply 100%. Like electric 
motors or gear transmissions, the transformation in hydraulic pumps and motors does not, at least in 
principle, involve any loss of entropy. We have already measured values up to 98%, so we are getting 
close. Although we are also realistic that we won’t achieve 100%, but neither does an electric machine 
or a gear transmission.
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7. Response from Christian Schänzle and Peter Pelz to the previous document 
Note_210818_Response_Review_Achten_Pelz_schaenzle (received on August 
21, 2021)  



 

TU Darmstadt  1 August 18, 2021 

Dear Dr Peter Achten, Dear Robin Mommers, 

In the following, you find our response to your review that we received on August 13th, 2021. At the 

beginning, we want to make a statement considering the review process so far and, secondly, give a 

short summary of the consensus and differences. 

Statements to review process 

On June 15 we got the notification from ASME that the review process for our paper was completed 

and that our paper was accepted. Two reviewers were very positive, one reviewer was neutral and you 

were very critical. This might be because we noted in your paper weak points regarding the three “c”, 

i.e. conciseness, consistency and clearness, cf. Heinrich Hertz’s book “Mechanics” and also Occam’s 

razor. We further noticed in the review process a different understanding what are physical axioms, 

definitions, models. From an engineering point of view, we missed the difference of function and 

quality and the different importance of function and quality for the various stakeholders, i.e. OEM, 

owner-operator, manufacturer, society, science.  

For us the most severe point is the following: You try to convince the community that the volumetric 

efficiency should be banned (once again this word). There are three reasons why the volumetric 

efficiency is of value for different stakeholders: 

1. OEM, Owner-Operator: Separating function and quality (energetic quality, ….) as an engineer 

should do, the volumetric efficiency gives the pump or motor function or characteristic. There 

are many kinds of positive displacement pumps. To give you an example: For screw pumps the 

function is a required volume flow and the most important characteristics for the customer is 

the volumetric efficiency of the pump. 

2. Manufacturer: Modelling the total efficiency of a machine requires the separation of 

volumetric losses and internal pressure losses. Hence, for the modelling engineer the 

separation in mechanical hydraulic and volumetric efficiency is beneficial. 

3. Scientist: It is indeed possible to show that the volumetric efficiency is an energetic measure 

as we did in our paper which is of interest from a purely scientific point of view. But also the 

task of modeling the overall efficiency it is beneficial to focus on volumetric losses and pressure 

losses separately.  

Looking at all stakeholders in the community the first point is obviously the most important one. There 

should be very clear, objective, convincing and consistent reasons and arguments to tell the customer 

that the volumetric efficiency is outdated. Your argumentation in your paper and in this dialog is from 

a scientific point of view too weak to support this.  

Both you and we put a lot of input and effort into the open review process for the sake of the 

community as well as for our own’s sake. Once again, we thank you for your comments.  

In our understanding we did all that was expected from us and where we agree to the suggestions for 

improvement. In fact, there are no errors in our paper as you suggested in your last email. This was 

confirmed by the three other reviews. So, we disagree with you in some points and that is perfectly 

normal and the full right of authors. In no way was the review a request to conduct an intense review 

process with you as also stated by Perry Li in his email on 16 August. Of course, we acknowledge the 

fruitful discussion so far.  
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In our presentation at the FPMC 2021, we will address the consensus and the differences stated below 

in a fair, respect full and open way. We will make clear three paper exist that critically examine the 

efficiency definition for positive displacement machines: 

[1] Achten et al.: “Measuring the losses of hydrostatic pumps and motors: A critical review of 

Iso4409:2007”, FPMC 2019 

[2] Li and Barkei: “Hydraulic effort and the efficiencies of pump and motors with 

compressible fluid”, FPMC 2020 

[3] Schänzle and Pelz: “Meaningful and physically consistent efficiency definition for positive 

displacement pumps - continuation of the critical review of iso 4391 and iso 4409”,  

FPMC 2021 

All three paper [1] to [3] are in a nice historical row taking up a discussion. The Fluid Power Community 

is critical and thoughtful. Thus, the community is able to make up its own mind about the content and 

the scientific discussion based on the three papers mentioned above. Against this background, a 

complete consensus between us is not necessary and may be not achievable. Instead, integrating the 

community in our ongoing discussion is the next logical step. 

To make our discussion public to the community we suggest to publish our discussion to date (e.g. via 

TUBiblio our University Library with DOI). Hence, the open dialog, initiated by you, would be open to 

the community as well. Please answer us, if you agree on this. We will make our letters public to the 

Fluid Power Community at least to the German Fluid Power Community.  

 

Consensus and differences 

Consensus 

- Difference in representation of mechanical hydraulic efficiency leads to neglectable 

differences in mechanical hydraulic efficiency values 

- Difference in representation of overall efficiency leads to neglectable differences in overall 

efficiency  

Differences 

- Consistency of approach deriving partial efficiencies 

- Understanding of volumetric efficiency and its relevance for the manufacturers 

 

 

Peter Pelz and Christian Schänzle 

PS: Response to your second review on 13th August, 2021 
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Response to your second review on 13th August, 2021 

Response to comments to point 1: 

We want to underline our statement, that “definitions are never wrong”. Thus, consistency is not a 

euphemism for “wrong”. 

Response to comments to point 2 and 3: 

We follow your argumentation that values obtained by our different efficiency definitions are nearly 

identical. However, in our opinion, this makes your approach defining the overall and the mechanical 

hydraulic efficiency independently of each other not consistent. 

The way of integration of the inner energy in your paper is neither transparent nor comprehensible. 

Not including the density in the integral and the associated assumptions and simplifications as 

presented in Mr. Mommers' email on 6th August are not available to the reader. In our opinion, our 

misunderstanding of your approach is not our fault, but a result of the non-transparent assumptions. 

At the same time, we are not able to apply this form of integration of the inner energy (equation 5 in 

your paper) on the compression of 𝑉max (see Figure 2 in your paper) obtaining the term 
1
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In our opinion, this makes your approach inconsistent. This does not mean your approach is wrong, 

but your assumptions are not consistent. This leads to representations, which in our opinion are 

unnecessarily complicated. 

Response to comments to point 4: 

We presented our view on the volumetric efficiency in our last review and in our revised paper. 

Therefore, we will not repeat it. 

In addition to the possibility of using the volumetric efficiency as a ratio of two energetic quantities, 

the volumetric efficiency also represents an essential quantity describing the function of a machine, 

whereas the overall efficiency measures the energetic quality of a machine. In our understanding, a 

separation of the function and the quality is essential for a sustainable systems design. Moreover, the 

customer of a pump manufacturer is mostly interested in the function of a machine described by the 

volumetric efficiency. Your arguments for no longer naming the volumetric efficiency do not convince 

us. Neither from the customer's point of view nor from the manufacturer's point of view. 

We accept the fact that for your mentioned application, e.g. a closed circuit pump with a low pressure 

around 20 bar, our system boundary and circuitry (see Figure 1 in our paper) is not applicable. 

Nevertheless, we are transparent with our system boundary and present our assumptions in a 
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transparent and comprehensible way. Furthermore, your argument is that the obtained values from 

the different definitions are nearly identical. 

 

 



8. Comment from Robin Mommers and Peter Achten to Note_210818 
(Comment_210825_note_Pelz, send to Christian Schänzle and Peter Pelz on 
August 25, 2021)



Dear mr Pelz, dear mr Schänzle,


In this comment, I will not respond to the discussion about the volumetric efficiency. We’ll be happy to 
discuss this at a later point. I do want to make a comment on some of the choices that we made in our 
paper, and on the inequality you shared with us in you previous note.


In your response, you mention several stakeholders in the hydraulic industry:

1. OEM, Owner-Operator

2. Manufacturer

3. Scientist

I think it is fair to say that your perspective is mainly from the third group, while we might be more between 
the second and the third group. If one looks at any definition (in this case “the way to measure efficiency”), 
we look at this from our own perspective. I mention this, because I think that this might explain some of the 
differences in the assumptions that both of us have made.


Our perspective 
This morning I have been measuring the performance of one of our prototype pumps, which you see in this 
photo below. This machine has a supply line (right side on bottom), a discharge line (left side on bottom), 
and a drain line (hose coming out at the side). This is not unique, and is actually the case for most pumps 
that we test on our test bench. In accordance with ISO4409 standard, we measure:

- the pressure and temperature of all lines

- flow rate of discharge and drain line

- torque and speed of the axle (actuated on the other side of wall)

Oil that leaves the pump via the drain port is directed to a tank (0 bar). A smaller pump pumps oil from the 
tank into the low pressure circuit (often between 5 and 15 bar), from which the tested pump is fed.





The symbolic representation of this pump is shown on the right, which you might recognise as figure 1 from 
our paper. Since the left figure is our starting point, and we want to include all possible pumps, we chose 
our system boundaries different than you did (note that when there is no external drain port, our derived 
system can still be used).


In one of your earlier comments you mentioned that choosing the system boundaries like this will mean that 
you no longer have a constant mass flow. We agree, and this is one of the challenges we had in the writing 
of our paper. However, as mentioned above, we tried to find a relation that is applicable to all pump and 
motors, and not just machines without an external drain. In our experience, there are a lot of displacement 
machine that have an external drain port.


In recent years, there have been some units for which a mechanical efficiency was measuring of more than 
one. As a result, it was becoming clear that the effects of compression can no longer be ignored when 
calculating the efficiencies of pumps and motors. This is why we started working on better definitions, 
which is still an ongoing discussion, as you are well aware. 



Our paper 
In the first part of our paper, we are only looking at the flow of energy and thus power in the machine. Using 
the thermodynamic system with the boundaries shown in the symbolic pump representation above, and 
some common assumptions (e.g. no power loss due to radiation), we form some basic equations to 
determine the power loss. The mechanical input power ( ) is converted to hydraulic power (which is the 
output power), and some of this converted power is lost via the drain line. The amount of power loss for this 
pump is thus found to be:


	 	 (1)


We both agree on this definition, but we have different opinions about the loss that occurs via the drain line. 


In the second part of our paper, we are trying to determine what is the ideal torque. The pV-diagram is a 
very powerful tool for understanding why the compression effects should be taken into account, which is 
probably why you also have several pV-diagrams in your paper. In your last response you show that there is 
an inconsistency in the way we calculate the compression energy during the integration of the internal 
energy and when we are interpreting the pV-diagram. While this is factually correct, this is merely an artefact 
of using a constant bulk modulus and only using the first term of the Taylor expansion that is related to the 
volume change. 


Allow me to explain. You wrote the following:


	 	 (2)


The left side of the inequality sign comes from figure 2 of our paper, which is the same as the pV-diagram 
shown below. The right side comes from the integral that we defined earlier (equations 5 and 6). If I 
understand correctly, you are calculating the energy change when you start at pressure , volume , 
and compress to pressure , volume .





Tω

Ploss = Pin − Pout = Tω − Phyd

1
2 Δp2Vmax

K̄s
≠ ΔU −

p1VmaxΔp
K̄s

p1 Vmax

p2 V2



The figure is showing the the dashed area is almost a triangle, which means that the size of the area will be 
very close to . The change in volume that is between brackets is also part of the 
second term on the right side of the inequality sign in (2). So we need to determine the amount of volume 
change during commutation. The volume at  due to compression is as follows:


	 	 (3)


If we assume a constant bulk modulus, this simplifies to


	 	 (4)


Using only the first term of the Taylor expansion of the exponential function, the volume change is found to 
be:


	 	 (5)


However, since the integral that is in the exponential of (3) is reversible, we can just as well state that the 
following is true:


	 	 (6)


Following the same reasoning, this results in:


	 	 (7)


Both (5) and (7) describe the same amount of volume, but merely differ due to an arbitrary choice. This is 
similar to the conclusion you made for yourself at the end of section 3.1 of your paper, for which you find 
the difference to be negligible. We can consider this to be an “inconsistent” use of choosing (5) or (7), but as 
far as simplifications go, they are effectively “the same”. As you also mentioned, we wanted to focus on 
what can be used practically. We believe that our way of formulating it is the most practical one. While the 
equations you found are slightly different, they are almost identical.


Actual discussion 
This leaves me to address an actual point of discussion, which you might have missed in our first review. 
We asked you how you “How do you suggest that  can be measured?”, since it is such an important 
parameter in the equations that you end up with. Your answer was that is can be calculated using equations 
(13) and (14) of your paper. However, the reason we asked this question was not because it was unclear 
how you calculate it. 


The actual question was “How do you suggest that  can be measured, in practice?”. The dead volume 

of a working chamber is defined a  in your paper, and as  in ours. We asked this question, since we 
have not been able to find a good way to determine this dead volume in a commercial machine, other than 
looking at drawings (which are often drastically simplified for cleanliness) and measuring it with callipers and 
other measuring devices in the actual machine (which is very inaccurate). Do you have any ideas on this?
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