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ABSTRACT

1SO 4391:1984 gives the common efficiency definition for
positive displacement machines. ISO 4409:2019 uses this
efficiency definition to specify the procedure for efficiency
measurements. If the machine conditions do not correspond with
an incompressible flow due to operation at high pressure levels,
the compressibility of the fluid and the dead volume of a pump
must be taken into account. On this point, 1SO 4391:1984 is
physically inconsistent.

Achten et. al. address this issue in their paper at FPMC
2019 presenting a critical review of ISO 4409:2007. They
introduce new definitions of the overall efficiency as well as the
mechanical-hydraulic efficiency. At the same time, they question
the validity of the volumetric efficiency definition. Li and Barkei
continue on this issue in their paper at FPMC 2020 and give a
new efficiency definition based on the introduction of a new
quantity @ which describes the volume specific enthalpy of the
conveyed fluid.

The motivation of this paper is to contribute to the ongoing
and fruitful discussion. Our approach starts with the most
general efficiency definition, namely the isentropic efficiency.
Subsequently, we make assumptions concerning the fluid
properties with respect to the compressibility of the conveyed
Sfluid. On the basis of the ideal cycle of a positive displacement
pump and the p-v diagram, we derive physically consistent and
more meaningful representations of the overall, the mechanical-
hydraulic and the volumetric efficiency that address the
inconsistency of ISO 4391:1984. Furthermore, we compare our
findings with the existing results of Achten et. al. and Li and
Barkei.

Peter F. Pelz
Chair of Fluid Systems
Technische Universitat Darmstadt
Darmstadt, Germany
Email: peter.pelz@fst.tu-darmstadt.de

NOMENCLATURE
e mass-specific internal energy
g gravitational body force
hy loss enthalpy
Ahg mass-specific isentropic enthalpy difference
Ahy g total mass-specific and isentropic enthalpy
difference
AH, isentropic enthalpy difference
Mpyq hydraulic torque
My, friction torque
Mg shaft torque
m mass
Megr effective mass
mg mass of conveyed fluid
m mass flow
n rotational speed
Ploss power loss
0 heat flow
Qetr effective volume flow
Qy, leakage
\ experimentally determined
displacement volume
Vet effective displacement volume
Vi total volume
V4 dead volume
D pressure
Ps shaft power
S entropy
u mean velocity at inlet or outlet of a machine
K isentropic compressibility
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Kg isentropic bulk modulus

n isentropic efficiency

Nmh mechanical-hydraulic efficiency
Nvol volumetric efficiency

0 density

o} volume-specific enthalpy

1. INTRODUCTION

The common efficiency definition for positive displacement
machines is given by ISO 4391:1984 [1]. However, the overall
efficiency definition and the definitions of the partial
efficiencies, namely the volumetric efficiency and mechanical-
hydraulic efficiency are physically consistent only for an
incompressible flow with the density o = const. If the machine
operates at high pressure levels the compressibility of the fluid
and the dead volume of a pump must be taken into account. On
this point, ISO 4391:1984 is physically inconsistent.

Achten et. al. [2] address this issue in their paper at FPMC
2019 presenting a critical review of ISO 4409:2007 [3].
ISO 4409:2007 specifies the procedure of efficiency
measurements and adopts the efficiency definition from
ISO 4391:1984. Meanwhile, a new version of ISO 4409 from
2019 exists (ISO 4409:2019 [4]), that no longer explicitly states
efficiency definitions and instead only refers to ISO 4391:1984.
Consequently, a critical review of efficiency definitions must
address [SO 4391:1984. Achten et. al. introduce a new definition
of the overall efficiency as well as the mechanical-hydraulic
efficiency discussing the influence of the compressibility of a
fluid as well as the dead volume of a positive displacement
machine. At the same time, they question the validity of a
volumetric efficiency definition.

Li and Barkei [5] continue on this issue in their paper at
FPMC 2020 and also give new definitions of the overall and
partial efficiencies considering a compressible flow. They
introduce a new quantity @ which designates the volume specific
enthalpy of the conveyed fluid and serves as the equivalent to Ap
considering the efficiency definitions for an incompressible flow.
Furthermore, their approach makes no assumptions regarding
compressibility or the relation between pressure and density.
Based on a comparison of their own efficiency definition with
the definition of Achten et. al and Williamson and Manrig [6], Li
and Barkei still find differences and inconsistencies among the
results.

The motivation of this paper is to contribute to the ongoing
discussion and to give a meaningful and physically consistent
representation for the overall, the mechanical-hydraulic and the
volumetric efficiency. At the beginning in section 2, we give the
most general efficiency definition which is the starting point of
our considerations. In the following, we make assumptions
concerning the fluid properties which are analogous to the ones
made by Achtenet. al., namely the linearization of the
constitutive relation between pressure and density and the use of
an averaged isentropic bulk modulus. In section 3, on the basis
of the assumptions, the ideal cycle of a positive displacement
pump and the p-V diagram, we derive a physically consistent
representation of the converted energy in a positive displacement

machine. Both extensive and intensive quantities are considered.
Consequently, we obtain physically consistent and meaningful
representations of the overall efficiency, the volumetric
efficiency and the mechanical-hydraulic efficiency. Section 4
compares the results of this paper with the definitions of Achten
et. al. and Li and Barkei. Finally, section 5 gives the conclusion.

2. ENERGY BALANCE AND ASSUMPTIONS FOR
EFFICIENCY DEFINITIONS
The assessment of the energy conversion in a positive
displacement machine is based on the assumption that the
machine operates stationary on a time-averaged basis. Hence, the
first law of thermodynamics reads

Ps + Q = mAh,, (1)

with the mass flow m, the difference of the mass-specific
total enthalpy between machine outlet and inlet 4h., the
mechanical shaft power P = 2mMgn being the product of the
shaft torque Mg and the rotational speed n, and the heat flow Q.
All gquantities are considered to be averaged over time.

In the case of a pump, Ps and Ah, are both greater than zero,
in the case of a motor, P5 and Ah, are negative. The mass flow at
the inlet and outlet of a machine are identical. In case of an
external leakage my, it is assumed to be redirected to the inlet of
the pump or the outlet of a motor respectively as shown in
FIGURE 1. Due to environmental constraints, real external
leakage is unlikely.

mh,

PUMP MOTOR
FIGURE 1: FIRST LAW OF THERMODYNAMICS FOR AN
ADIABATIC POSITIVE DISPLACEMENT PUMP AND MOTOR.

The commonly used efficiency definition for positive
displacement machines is the isentropic efficiency. In fact, this
efficiency definition is used for all machines, turbo machines or
positive displacement machines with a compressible flow or an
incompressible flow, as long as the machine operates
adiabatically. Considering an adiabatic machine, the isentropic
efficiency 7 is defined as the ratio of the product of mass flow
and mass-specific isentropic and total enthalpy difference Ah,
and the shaft power

e ()
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The exponent +1 applies to pumps, the exponent - 1 applies
to motors. While the following sections focus on pumps, the
described procedure can be applied on motors similarly.

Dividing the mass-specific total enthalpy difference Ah,
into the isentropic fraction 4h.s and the loss fraction h;, we
obtain the following representation of the isentropic efficiency

ni=1——. (3)

Equation (3) illustrates that the efficiency is a measure of
the dissipative power losses Pyss = 1i1h;.

Given an approximately incompressible flow and an ideally
rigid machine, the total enthalpy h; is

u2
he = t—tgzte,

I3

(4)

2
ohy =p+g7+ggz+ge=Apt+Qe

equation (2) leads to the 1SO 4391:1984 efficiency
definition

_ Ap.Q _ Ap.Q
PS ZﬂMSn'

n: (5)

with the total pressure difference Ap, and the volume
flow Q. Extending equation (5) with the displacement volume V,
the efficiency can be written as the product of the volumetic
efficiency 7., and the mechanical-hydraulic efficiency n,;,

L ApV
Nmh ‘= 27I'MS.

N = Nvollmh» Nvol *= W' (6)

The displacement volume needs to be determined
experimentally on the basis of Toet’s method [7].

In the case of high pressure differences, the mass-specific
isentropic internal energy difference Ae; must not be neglected
which represents the converted energy due to compression.
Hence, the compressibility of the fluid needs to be taken into
account. At this point, we make the following two assumptions:

0] The compression and decompression of the fluid is

isentropic (s = const) and can be described using
an averaged isentropic bulk moduls K or averaged
isentropic compressibility £ = 1/ K.

(i) The relation between volume V and pressure p of a
fluid
_lav | @)
Ty dp *°

is linearized and yields

lAVl
VaAp '™

K~ —

(8)

As can be seen in section 3.2, these assumptions are not
mandatory but can be easily extended by pressure dependent
compressibility x(p). However, the assumptions shorten the
efficiency representations derived from the isentropic efficiency
definition in equation (2), as can be seen in the next section.
Furthermore, Ivantysyn und lIvantysynova [8] state that the
resulting error due to linearization for common hydraulic fluids
is negligible.

3. EFFICIENCY DEFINTION BASED ON THE IDEAL
CYCLE WITH DEAD VOLUME
Based on the above assumptions, the next step is to
determine the numerator of the isentropic efficiency definition in
equation (2), which is the product of mass flow and the
difference of the mass-specific isentropic enthalpy Ahg (kinetic
energy u?/2 and potential energy gz are neglected).

3.1 ldeal cycle based on extensive quantities

Firstly and for reasons of clarity, we focus on the isentropic
enthalpy difference AHg of the conveyed fluid mass per cycle,
which is an extensive quantity. The isentropic enthalpy
difference is equivalent to the energy transferred between
machine and fluid per rotation. The time averaged mass flow

. 1 T":"
m:= ?JO m(t)dt (9)

is given by the time integral of the temporal mass flow m(t)
and the cycle time T = 1/n. Hence, the time averaged mass flow
is the product of conveyed fluid mass per rotation my and the
rotational speed n

m = nmg. (10)
This yields
mAhg = nAH;. (11)

FIGURE 2 shows the ideal cycle of a positive displacement
pump with a dead volume Vj filled by a compressible fluid in a
p-V-diagram. The shaded area, given by the points abcd, states
the isentropic enthalpy difference AH; and needs to be calculated
in order to derive a meaningful efficiency representation based
on the efficiency definition (2) and equation (11). The dead
volume results from the design of a positive displacement pump
and must be calculated on the basis of the geometric pump
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dimensions. The displacement volume V 1is determined
experimentally at a pressure difference Ap = 0 (cf. [7]).

5 abc'd’ = Vegeq Ap

= i KAp?

@ bee' = (Vg + Vie + Vegrr) >

W Vet 2

o , KAp

& add’ = (Vg + Vae) ——
Pz S & abed = abc'd’ — bec’ + add’

KAp
= ApVegra (1 - T)

Ap abcd = AH;
Py / ®

0

VOLUME
0"y Vae Veft1 oLy
v

FIGURE 2: IDEAL CYCLE FOR A POSITIVE DISPLACEMENT
PUMP WITH A DEAD VOLUME AND A COMPRESSIBLE FLUID.

Beginning the ideal cycle at the top dead center, point d, and
the pressure p,, the dead volume decompresses, d—a, before
refilling the displacement chamber at the pressure level p;, d—a.
The difference between the compressed and expanded dead
volume is called V.. In the following, the fluid with the
effective displacement volume V¢, flows into the displacement
chamber, a—b. At the bottom dead center, point b, the total
volume V; of the displacement chamber is

Vt = Vd + V = Vd + Vd,e + Veff,l- (12)
The effective displacement volume V¢4 is given by
Vetr1 =V — Ve (13)

and equation (8) yields
Vae = Vakl|Ap|. (14)

Consequently, the effective displacement volume V¢ can
be calculated from the experimentally determined displacement
volume V, the geometrically calculated dead volume Vy, the
averaged isentropic compressibility % and the pressure
difference Ap. This is of major importance, as the
decompression of the dead volume and reduction of usable
displacement volume AV =V3, =V — Vg, does not cause
volumetric losses or dissipation of energy. Instead, it underlines
the effective Volume V¢4 being the relevant geometric quantity
in the partial efficiencies, the volumetric and mechanical-
hydraulic efficiency.

Further on, the total volume is compressed to the pressure
level p,, b—c, and displaced from of the displacement chamber
until the top dead center is reached again, c—d.

The isentropic enthalpy difference AHg (abcd) can now be
calculated from the following areas, each described by its corner
points

abcd = abc’'d’ — bec’ + add’. (15)

Each area can be easily calculated based on the edge lengths.
These correspond to the pressure difference Ap, the effective
displacement volume Vg, and the volume difference due to
compression, b—c, or expansion, d—a, calculated with
equation (8). The results for the different areas are

abc'd = ApVeff,l ,

!

KAp?
bee’ = (Vg + Vge + Veff,l)T. (16)

add’" = (V4 + Vy,) i Zp :

The area add’ = ada’ is calculated from the perspective of
compressing the decompressed dead volume Vg + Vg, a—d.
In this way, the compression energy can be represented by
V4 + Vg e. Since the compression or decompression is assumed
to be isentropic, the absolute value of the converted mechanical
energy is equal, a—d = d—a. However, due to the assumption
made, namely the linearized relation in equation (8), there is a
deviation between expansion and compression:

area add’ _ Vqrhp® 17)
expansion (d—a) 2 '
area add’ (Va + Vg ) cAp?
, =94 def P (18)
compression (a—d) 2

This deviation results from the linearization error which is
negligible for the range of practical pressures and therefore not
considered any further. Equations (15) and (16) now leads to the
isentropic enthalpy difference AHg of the conveyed fluid mass
Megr = Vegr 101 PEr rotation

A
abcd = ApVegrs (1 — %) . (29)

Equation (19) gives a short, meaningful and physically
consistent representation of the isentropic enthalpy difference
which can be used for the efficiency representation based on the
definition in equation (2). Before that, we derive the same result
based on the mass specific isentropic enthalpy, which is an
intensive quantity.
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3.2 Ideal cycle based on intensive quantities

Due to internal leakage, the measured mass flow rate
m = nmg (cf. eq. (10)) will differ from the effective mass flow
nm, = 0,Vegr1n With the density o; = o(py) . It is therefore
advantageous to use the mass-specific isentropic enthalpy
difference Ahg, which is an intensive quantity:

AH,, A e
' —p(1—ﬂ). (20)

Ahy = —3¢ —
oM 01 2

Equation (20) can also be derived from the mass-specific
p-v-diagram shown in FIGURE 3. The mass-specific isentropic
enthalpy difference from state 1 to 2 also results in

Ap KAp

2
Ah =f vd z—(1——). 21
=) p o 3 (21)

One obtains the isentropic enthalpy change AHg (abcd) by
multiplying the corresponding fluid masses of the dead volume
mq and the effectively conveyed volume meg = 04 Vegrq

abcd = AHy, = (Mg + mg)Ahg — myAhy

= MegrAhy (22)
KAp
= ApVessy (1 - T) .
m = mdAhs
py Ahs= fzvdp = A—p(l - @> p E = (ma + mes)Ahs
1 o 2 abed = meggAhy
. 2 - R Q
\ \
\
- )
\ A\
P1 \% - b >D
0 v T / v O %4
0 1= 1/01 0 Vettr

FIGURE 3: MASS-SPECIFIC p-v-DIAGRAM FOR AN IDEAL
POSITIVE DISPLACEMENT PUMP AND A COMPRESSIBLE
FLUID.

At the same time, it is obvious that the mass-specific
isentropic enthalpy difference based on equation (21) can also be
calculated with a non-linearized relationship of pressure and
density (cf. equation (7)) and a pressure dependent
compressibility x(p).

3.3 Efficiency representations
Following the efficiency definition according to
definition (2) and equation (21) one obtains

(23)

mAhg Q.Ap < EAp)
n: = - )

" 2nMsn  2mMgn 2

The mass flow m = g,Q, is the product of the volume
flow Q; and the density o, at the pump inlet. Since the volume
flow is usually measured at the pump outlet, the volume flow Q
can be calculated with equation (8) by

Q2

=T (24)

¢

Based on equation (23), representations of the partial
efficiencies can be derived, which also give a physically
consistent and meaningful measure for the volumetric and
mechanical-hydraulic losses:

(i) The leakage Qp = Qerq — Q1 represents the difference
between the effective volume flow Qggrq = nVegy and
the measured volume flow at pump inlet Q,. The leakage
causes the power 10ss P,ss1, = ApQL.

(i)  The friction torque My,;, = Mg — My,q is calculated from
the difference of shaft torque Mg and hydraulic torque

Mhyd=%(1—%)fhis results in the power

10SS Ploss,mn = 2mMppn.

Extending equation (23) with the effective displacement
volume Vg4 (cf. equation (13) and (14)) in the numerator and
denominator, the isentropic efficiency yields

ApV. KA
Q1 ApVesrq (1 _ _p) (25)

TlVeff’l 27TMS 2

Consequently, definitions of the volumetric efficiency 74
and the mechanical-hydraulic efficiency n,,, can be given by

Q1 QL

Nvol = =1- ’
NVefr1 [AATE

_ AHs _ ApVesrs (1 3 EAP)
Tmh =20 Mg 2nMg 2

1

2T Mmh
1—-kKAp/2 ApV,

(26)

1+

Equations (23) and (26) provide representations of the
overall efficiency, the volumetric and the mechanical-hydraulic
efficiency which measure the energetic quality of positive
displacement pumps with a dead volume in a physically
consistent and meaningful way. Hence, the energetic quality can
also be quantified based on the volumetric losses Q;, and the
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friction or momentum losses of the conveyed fluid M. If the
dead volume is negligibly small or the flow is approximately
incompressible due to low pressure differences of the pump, the
effective displacement volume Vg4 and the experimentally
determined displacement volume V will be identical.
Furthermore, kAp « 1and the efficiency definitions of 1SO
4391 according to equations (5) and (6) can be applied.

4. COMPARISON OF EFFICIENCY

REPRESENTATIONS IN THE LITERATURE

As stated in the introduction the motivation of this paper is
to contribute to the ongoing and fruitful discussion about
meaningful and physically consistent efficiency representations
of positive displacement machines with a dead volume and a
compressible flow which was started at FPMC 2019 by Achten
et. al [2]. Against this background, the overall efficiency and
partial efficiency representations derived in this paper are
compared to the efficiency representations given by Achten et.
al. and Li and Barkei [4]. TABLE 1 summarizes all efficiency
representations in the notation of this paper considering a pump
with one single displacement chamber.

Achten et. al. make new proposals for the overall and the
mechanical hydraulic efficiency. They also calculate the
isentropic enthalpy AHg from the ideal cycle of a positive
displacement machine (cf. FIGURE 2) but derive a more
extensive formula resulting in a more extensive representation of
the mechanical efficiency as well. This is due to the calculation
of the area add’ (cf. FIGURE 2) from the perspective of an
expansion (see equations (17) and (18)) and due to the
linearization error. On the other hand, Achten et. al.’s definition
of the overall efficiency is physically inconsistent. They
integrate the inner energy (see [2] equation (5)) neglecting the
pressure dependent density g. Consequently, this leads to a
physically inconsistent result of the hydraulic power as well
which is the nominator of the overall efficiency. At the same
time, they question the validity of a volumetric efficiency
definition and, thus, do not provide one. A physically consistent
volumetric efficiency definition that fulfills n = NNyl 1S NOt
achievable due to their overall efficiency definition.
Furthermore, their view on the volumetric efficiency does not
address rotating positive displacement pumps, which (i) are used
at lower pressures, (ii) usually have no or a negligible dead
volume, and for which (iii) volumetric losses are often decisive
for efficiency. In this regard, the volumetric efficiency must be a
measure of the power losses due to leakage.

Li and Barkei give generally valid and physically consistent
definitions of the overall efficiency, the volumetric and the
mechanical hydraulic efficiency. These definitions contain their
newly introduced quantity @ which is the volume-specific
enthalpy (cf. FIGURE 2)

AHq

b = .
Vet 2

(27)

In this way, they do not make any assumptions regarding the
fluid properties, namely the compressibility of the fluid, e.g. by
using an averaged bulk modulus or by linearizing the relation of
pressure and density. However, this is why their approach results
in efficiency representations that are slightly more difficult to
understand. Regardless of this, Li and Barkei’s representations
are identical to the representations derived in this paper when
taking into account the assumptions made in section 2.

5. CONCLUSION

On the basis of the most general efficiency definition,
namely the isentropic efficiency, the assumptions considering the
fluid properties and the p-v diagram, we derive physically
consistent and meaningful representations of the overall, the
volumetric and the mechanical-hydraulic efficiency. These
representations are consistent with the definitions of Li and
Barkei [4] and may serve as a template for a revision of
ISO 4391:1984 [1]. In particular, the use of the effective volume
Vesr1 at a low-pressure level (cf. equation (13) and (14)) is the
basis of a short and comprehensible efficiency representation.

TABLE 1:EFFICIENCY DEFINITIONS OF PUMPS.

volumetric efficiency

Achten et. al: no definition

O Q>
Li and Barkei: Nyol i=——— =
YU ey Vs
. O Q2
this paper: Nyol := =

NWerr1  MVetra

mechanical-hydraulic efficiency

. ApV [1 A _(1+Vd)]
Mmh =5 M P2y

Achten et. al:

_ Verro @ (Ap,p,)

Li and Barkei: Nmh i= >l
Mg
d(Ap,p,) = j 2Vd _ AHs
b= Vetrz J1 P= Vet .2
this paper: = APVeria (1 - —}EAP) _ Afs
paper: Tmh = 5 Mg 2 )~ 2nMg

_ DpVegr, (1 — KAp/2)
© 2nmMg (1 —KkAp)
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overall efficiency

Achten et. al:

:= p2Q2 (1 + %ﬁ) — 101

ZﬂMSn

®(Ap,
Li and Barkei: = Lppl)

ZnMsn

i — ApQ, KAp
wepper = (1-3)
_ ApQ, (1—rkAp/2)
2nMsn (1 — kAp)
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Review

Meaningful and Physically Consistent Efficiency Definition for
Positive Displacement Pumps - Continuation of the Critical Review
of ISO 4391 and 4409 (FPMC2021-68739)

Introduction

Contrary to normal conventions we (Peter Achten and Robin Mommers) decided, as reviewers, not to
have an anonymous review, but instead to have an open (ongoing and fruitful) discussion. Obviously
we consider the review of ISO4409 and 4391 an important discussion and we highly value your
thoughts and concerns.

The intend of our 2019-paper! was to propose a new set of definitions and equations for the losses and
efficiencies of hydrostatic pumps and motors. The new set was meant as a replacement of the
equations which were at that time defined in 1ISO4409:2007.

It was our goal to create a new set of efficiency and loss definitions which are:

= Practical, i.e. not too complicated for general use;

- Useful, which means that you can measure or determine the parameters involved with sufficient
accuracy;

Generic, i.e. valid for all hydrostatic pumps and motors, including variable displacement pumps and
motors. But also including units with a zero or near zero dead volume, or units which are used at
lower pressures, or units which predominantly have high volumetric losses.

The new equations are not a precise representation of the physical reality (if ever this is possible), but
sufficiently accurate to have a better understanding of the losses, than current conventions and
standards allow us. There are many effects and influences that we have considered to be of less
importance and for which we have decided that these effects could be ignored or neglected. Many of
these assumptions have been discussed with our colleagues in academia and industry, also outside
the group of authors of our 2019-paper.

We would also encourage you to read our report ’Performance of Hydrostatic Machines’ from INNAS,
which can be downloaded at the INNAS website (www.innas.com). Annex B of this report discusses a
sensitivity analysis of the bulk modulus and the possible effects of a pressure dependent density
model.

To quote this report: “In conclusion, it is found that the alleged increase in accuracy gained by using a
detailed oil density model to determine the bulk modulus is probably negligible compared to the
accuracy of the measurement results. For the sake of clarity as well as simplicity, the use of a constant
value for the isentropic bulk modulus during the calculation of hydrostatic performances will suffice.”

We have chosen to assume a constant density and bulk modulus model (as you do as well, at least
implicitly in your analysis) because the influence is rather small and would result in much more
complicated definitions of all efficiencies and losses.

1 Achten, P,, R. Mommers, T. Nishiumi, H. Murrenhoff, N. Sepehri, K. Stelson, J.-O. Palmberg, K. Schmitz,
‘Measuring the losses of hydrostatic pumps and motors - A critical review of ISO 4409, Proc. FPMC2019, ASME/
Bath Symposium on Fluid Power and Motion Control, October 7-9, 2019, Sarasota, Florida, USA (FPMC2019-1615)
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Consensus

Let us first start with the consensus: we both agree upon the necessity for a revision of the ISO-
standards with respect to definition and equations for the overall efficiency, the hydro-mechanical and
the volumetric efficiency of hydrostatic pumps and motors. We furthermore agree that the effects of the
bulk modulus of the oil need to be included in the loss analysis of hydrostatic pumps and motors.
Although the equations, which are proposed by you in Table 1, don’t mention explicitly any influence of
the dead volume, there is an implicit influence through the relation between V and Ves1. Substituting
Eqg.14 in Eq.13 results in:

Vg1 =V =V, R Ap] ("
In this equation, V4 represents the dead volume. In our paper, this parameter is called Vimin.
Consequently, we both agree that the influence of the dead volume should be included in the efficiency
definitions.

At first sight it seems that your equations for the mechanical-hydraulic efficiency and the overall
efficiency differ much from ours, but in reality they are almost the same. Also here we (almost) agree.
That can be explained as follows:

Your paper results in the following definition of the mechanical-hydraulic efficiency:

ApV ( EAP)
nmh 271'M5 2 ( )

Substituting the above equation (Eq.1) for Ver 1 results in:

— 2
A

This is almost the same equation as ours (see Table 1 in your manuscript), except for the term:

v, [kap]
\% 2

Just to give you an idea of the magnitude, we can calculate the value of:

(I—I?Ap|:%+%:|) 4)

being our correction factor, and

(1_mpg+g}+g_[fgpl ] ®

being the correction factor that follows from your equation. Assuming:



K=6E—10 [Pa]
Ap =400 [bar] = 4E7 [Pa] (6)
V,/V=07 [-]

our correction factor becomes a value of 0.9713 and yours 0.9715, a difference of 0.0002.

Furthermore your equation for the overall efficiency can be rewritten as follows:
_ ApQ, (1-KAp12)  ApQ, (1+KAp/2—KAp)
1 2rMg (1-KAp) 2zMg;  (1-KAp)

_ M0, (|, Kap/2
2rM\ (1-KAp)

?)

This is rather similar to our equation:

=P2Q2(1+EAP/2)_P1QI (8)
2w Mg

n

If, for the moment, we ignore the fact that we split p2 and p+1, whereas you consider the pressure
difference Ap, than our correction term is:

(1+%Ap/2) )]

whereas yours is:

(H_(“P” J (19)

1-KAp)

Again using the parameters mentioned in Eq(6), our correction factor has a value of 1,0120 and yours
of 1,0123, a difference of 0,0003.

These differences are so small that we can conclude that we largely have a consensus about the new
definitions for the mechanical-hydraulic and the overall efficiency.




Differences

Aside from the consensus, we also have some important differences:

1.

As mentioned in the introduction, our equations are for all hydrostatic pumps and motors, also
pumps and motors with an external case drain or a pre-charged oil supply (i.e. p1 # 0). You consider
the outgoing mass flow equal to the input, which means you exclude all pumps and motors having
an external case drain. Furthermore:

szz_p1Q1¢ApQ (II)

We believe that you are making a mistake when assuming that ApQ = p2Q2 — p1Q1 (as you do in
your paper) Not only when p+ # 0, but also because a pressurised and heated up flow is different
from a low pressure flow at another temperature. This is also the reason why your definition of the
overall efficiency differs from ours. It should be noted that also ISO4391 mentions a separation of
the p2 and p+ flows.

Whenever the pressure level at the low pressure side is higher than the case pressure, it is no
longer certain from which pressure level the volumetric losses come from. Part of the loss will come
from the high pressure side of the pump, but another part will come from the low pressure side.
Since the bearing gaps are often larger at the low pressure side, the leakage from the low pressure
side is often considerable, despite the lower pressure level.

This argument seems to be of no concern if the pump or motor housing has the same pressure
level as the low pressure side of the unit, but even then the Ap at which leakage occurs is
uncertain. The thermodynamic cycle, represented in the pV-diagram, is not a closed cycle. You may
use it for determining the indicated work of a single cycle (which can be used for calculating the
hydro-mechanical efficiency), but you can’t use it for calculating the volumetric efficiency.

As an example, consider a hydrostatic axial piston motor taking high pressure oil from a high
pressure supply line. During commutation the high and low pressure side are connected via the
silencing grooves. At that moment there is a short circuit connection, and the motor is just taking oil
from the high pressure line as much as is needed. However, during the commutation, the pressure
in the commutating cylinder increases. As a result, the short circuit leakage flow occurs at variable
pressure differentials. Consequently your assumption in section 3.3, point (i) that Piess. = ApQL is
incorrect.

We object to the idea that the volumetric efficiency can be defined as Q1/nVes,1 (Eq.26 and Table 1
in your manuscript). This is a flow ratio, not an energy or power ratio. Whereas the denominator
could be multiplied by a pressure level (in order to convert it to a power unit), this can’t be done
with the numerator, since you don’t know from which pressure level or pressure differential the
leakage flow originates. This is also the reason why we didn’t define a volumetric efficiency.

In section 4 you write that we “question the validity of a volumetric efficiency definition and, thus,
do not provide one. A physically consistent volumetric efficiency definition that fulfils n=nmn nvo, is
not achievable due to their overall efficiency definition.”

We didn’t provide a definition of the volumetric efficiency because we couldn’t find a definition
which was physically consistent with the inner processes in hydrostatic pumps and motors. You
can make and define a flow ratio, but that is not the same as a power or energy ratio (which was
the topic of our paper).



The fact that we didn’t come up with a definition of the volumetric efficiency has nothing to do with
our definition of the overall efficiency. After all, in theory, it could be possible to make an equation in
which our overall efficiency is divided by our definition of the hydro-mechanical efficiency, which
would then result in a ‘volumetric efficiency’ which fulfils n=nmn nvol. But this would not make any
sense due to the reasons mentioned before.

. The difference between your equation for the mechanical-hydraulic efficiency and ours is due to the
calculation of the area abcd in your paper, which is the equivalent of E; in our paper. You are correct
that the linearisation of Eq.7 in your paper to Eq.8 results in an error. We also agree that this error is
negligible. However, due to the linearisation, the area add’ can result in slightly different equations
(as you indicate in Egs.17 and 18). The difference is however negligible (as you have mentioned
yourself). Nevertheless, you chose to use Eq.18 for your further analysis. This is inconsistent with
Eq.14 in which you define Vqye. It should be clear that the triangular area add’ can be calculated as:

add’=1ApV,, (12)
When substituting your Eg.14 from the manuscript in the equation above, you’ll get:

V,.KAp
2

add’ = (13)
which equals Eqg. 17 in your manuscript. If you would have continued to use this equation to
calculate the area abed, then your definition of the hydro-mechanical efficiency would result in the
same equation as ours, aside from the difference in using Ap (which you do), versus splitting the
energy levels p2 and p1 (like we do). It should also be noted that also for the calculation of the area
bcc’, the same difference between ‘expansion’ and ‘compression’ could be made as you did for
add’. Also in that case, the choice would be rather arbitrary and only result in a negligible error. It is
however remarkable that you noted the difference for add’ but not for the calculation of area bec’.
Furthermore, the use of Eq.17 does not correspond to your definition of Vge (EQ. 14).




Comments

1. How do you suggest that Vesr,1 can be measured?

2. If Ver,1 needs to be calculated from Eq.13 from your manuscript, wouldn’t it be better to define
your equations also based on V instead of Vers,1?

3.  We would have preferred if, instead of Eq.1 in your manuscript you would have used our first step
in the analysis:

P.+Q=rih, —mh =

= szz(u2+&]_Q1p1[u1+&]= (14)
Y P

2 1

- (szzuz _Q1p1u1)+(sz2 _PlQl)

Aside from being a more general equation, the above equation also clarifies that, in our opinion, you
can’t just multiply Ap with Q, as you do in Eq.23

4. In Eq.4 you suddenly convert the local pressure p to a pressure differential Apt (for which no
definition is given in the nomenclature). We believe this is wrong.

5. The area add’ can also be calculated on the basis of the volume V4,6, which would then result in Eq.
17 to be used for further analysis.

6. Do you agree that the differences between your definition of the overall efficiency and ours is very
small if not negligible?

7. Do you agree that the differences between your definition of the mechanical-hydraulic efficiency
and ours is very small if not negligible?

8. Do you agree that you would have the same definition for the mechanical-hydraulic efficiency if you
would have used Eq.17 for calculating abcd?

9. ltis not possible to define the volumetric power loss Pioss,L as ApQL.

10. It is not possible to make a definition for the volumetric efficiency in terms of a power or energy
ratio.

11. It is incorrect that our definition of the overall efficiency in ‘physically inconsistent’. We urgently
invite you to show us why or where you see any physical inconsistency.

12. We disagree that we have a different overall and a different hydro-mechanical efficiency because of
the linearisation error. We both make the same linearisation error. We both agree that this error is
negligible.

13. We indeed assume the density to be constant in EqQ.5 of our paper (your remark in section 4).
However your analysis and equations are not different from ours in this perspective. The error of
this assumption has been quantified in our test report and can be considered to be negligible.

14. In section 4 you write that we can’'t make a physically consistent volumetric efficiency definition due
to our overall efficiency definition. We kindly ask you to explain this statement.



15.

16.

17.

18.

19.

20.

21.

22.

In section 4 you write that our view on the volumetric efficiency does not address rotating positive
displacement pumps which are used at lower pressures. We kindly ask you to explain this
statement.

In section 4 you write that our view on the volumetric efficiency does not address rotating positive
displacement pumps which usually have no or a negligible dead volume. We kindly ask you to
explain this statement. Please note that in our report ’Performance of Hydrostatic Machines’ we
also show the test results of a Marzocchi pump which has a zero dead volume.

In section 4 you write that our view on the volumetric efficiency does not address rotating positive
displacement pumps for which volumetric losses are often decisive. We kindly ask you to explain
this statement.

In the conclusion you emphasise the importance of basing your equations on Ves,1. As mentioned
before, we can’t understand how this results in a practical set of equations since there is no way of
measuring Vef,1

TABLE 1: The volumetric efficiency from your manuscript (and that of Li and Barkei) are wrong if
considered from an energy analysis point of view.

TABLE 1: Your equation for the mechanical-hydraulic efficiency is almost equal to ours. The
differences are due to a different assumption in the linearisation of the commutation processes. The
differences are in the end negligible.

TABLE 1: As a general formula for pumps and motors it is wrong to assume to use Ap for a single
flow (Q1 or Qo) instead of a separation of the high and low pressure flows.

Finally: Why is it so important that the overall efficiency needs to be the product of a hydro-
mechanical efficiency and some kind of volumetric efficiency? Energy efficiencies can be multiplied
in order to get an overall efficiency, if and only if the processes are in series. An example is the
combination of an electric motor and a pump, for which you may multiply the efficiency of the
electric motor with the efficiency of the pump. But the friction and leakage losses in a pump are not
processes which can be separated, nor can they be considered to run in series.

May, 2021
Peter Achten and Robin Mommers
INNAS
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ABSTRACT

ISO 4391:1984 gives the common efficiency definition for
positive displacement machines. 1SO 4409:2019 uses this
efficiency definition to specify the procedure for efficiency
measurements. If the machine conditions do not correspond with
an incompressible flow due to operation at high pressure levels,
the compressibility of the fluid and the dead volume of a pump
must be taken into account. On this point, 1SO 4391:1984 is
physically inconsistent.

Achten et. al. address this issue in their paper at FPMC
2019 presenting a critical review of 1SO 4409:2007. They
introduce new definitions of the overall efficiency as well as the
mechanical-hydraulic efficiency. At the same time, they question
the validity of the volumetric efficiency definition. Li and Barkei
continue on this issue in their paper at FPMC 2020 and give a
new efficiency definition based on the introduction of a new
quantity @ which describes the volume specific enthalpy of the
conveyed fluid.

The motivation of this paper is to contribute to the ongoing
and fruitful discussion. Our approach starts with the most
general efficiency definition, namely the isentropic efficiency.
Subsequently, we make assumptions concerning the fluid
properties with respect to the compressibility of the conveyed
fluid. On the basis of the ideal cycle of a positive displacement
pump and the p-v diagram, we derive physically consistent and
more meaningful representations of the overall, the mechanical-
hydraulic and the volumetric efficiency that address the
inconsistency of 1SO 4391:1984. Furthermore, we compare our
findings with the existing results of Achten et. al. and Li and
Barkei.

Peter F. Pelz
Chair of Fluid Systems
Technische Universitat Darmstadt
Darmstadt, Germany
Email: peter.pelz@fst.tu-darmstadt.de

NOMENCLATURE

e mass-specific internal energy

g gravitational body force

hy loss enthalpy

Ahg mass-specific isentropic enthalpy difference

Ahyg total mass-specific and isentropic enthalpy
difference

AH isentropic enthalpy difference

Myya hydraulic torque

Mon friction torque

Mg shaft torque

m mass

Mgt effective mass

mg mass of conveyed fluid

m mass flow

n rotational speed

Ploss power loss

0 heat flow

Qefr effective volume flow

Q;, leakage

\Y experimentally determined
displacement volume

Vesr effective displacement volume

13 leakage volume per rotation

Vi total volume

V4 dead volume

p pressure

P shaft power

s entropy
mean velocity at inlet or outlet of a machine

K isentropic compressibility
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Kg isentropic bulk modulus

n isentropic efficiency

Nmh mechanical-hydraulic efficiency
Nvol volumetric efficiency

0 density

® volume-specific enthalpy

1. INTRODUCTION
The common efficiency definition for positive displacement

machines is given by 1SO 4391:1984 [1]. However, the overall
efficiency definition and the definitions of the partial
efficiencies, namely the volumetric efficiency and mechanical-
hydraulic efficiency are physically consistent only for an
incompressible flow with the density o = const. If the machine
operates at high pressure levels the compressibility of the fluid
and the dead volume of a pump must be taken into account. On
this point, 1SO 4391:1984 is physically inconsistent.

Achten et. al. [2] address this issue in their paper at FPMC
2019 presenting a critical review of 1SO 4409:2007 [3].
1SO 4409:2007 specifies the procedure of efficiency
measurements and adopts the efficiency definition from
1ISO 4391:1984. Meanwhile, a new version of ISO 4409 from
2019 exists (1SO 4409:2019 [4]), that no longer explicitly states
efficiency definitions and instead only refers to 1SO 4391:1984.
Consequently, a critical review of efficiency definitions must
address 1SO 4391:1984. Achten et. al. introduce a new definition
of the overall efficiency as well as the mechanical-hydraulic
efficiency discussing the influence of the compressibility of a
fluid as well as the dead volume of a positive displacement
machine. At the same time, they question the validity of a
volumetric efficiency definition.

Li and Barkei [5] continue on this issue in their paper at
FPMC 2020 and also give new definitions of the overall and
partial efficiencies considering a compressible flow. They
introduce a new quantity @ which designates the volume specific
enthalpy of the conveyed fluid and serves as the equivalent to Ap
considering the efficiency definitions for an incompressible flow.
Furthermore, their approach makes no assumptions regarding
compressibility or the relation between pressure and density.
Based on a comparison of their own efficiency definition with
the definition of Achten et. al and Williamson and Manrig [6], Li
and Barkei still find differences and inconsistencies among the
results.

The motivation of this paper is to contribute to the ongoing
discussion. In this regard, our argumentation adheres the
following principles:

(i) Definitions are never wrong. Instead, appropriate criteria
for definitions are their meaningfulness, their physical
consistency and their acceptance. For efficiency definitions
to be accepted, they must be easy to apply, practical for
users, and based on a transparent derivation.

(ii) The definition of partial efficiencies based on the extension
of the isentropic efficiency definition with the displacement
volume goes hand in hand with the idea of an ideal, i.e. loss-
free, machine that is characterized by its displacement
volume. This allows the calculation of the converted energy

per rotation as well as the volume flow of an ideal machine,
which are essential for the partial efficiencies. Thus, the
partial efficiencies have a high practical value and provide
a starting point to modeling the overall efficiency.
Modeling succeeds on the basis of loss analysis, as
systematically started by Wilson [7] by means of tribology
and fluid mechanics.

(iii) The idea of using an ideal machine as a reference is a
proven and well-known approach. Four prominent
examples demonstrate this: firstly, the considerations of
Sadi Carnot on an ideal heat engine leading to the definition
of Carnot's efficiency [8], secondly, the considerations of
Betz on the upper limit of wind power for wind turbines [9],
thirdly, the considerations of Pelz on the upper limit for
hydropower in an open-channel flow [10] and, fourthly, the
considerations of Turing on an abstract machine based on
mathematical model, i.e. the Turing machine [11].
Following these principles, we present meaningful and

physically consistent representations for the overall efficiency as

well as the mechanical-hydraulic and the volumetric efficiencies.

At the beginning in section 2, we give with the most general
efficiency definition which is the starting point of our
considerations. In the following, we make assumptions
concerning the fluid properties which are analogous to the ones
made by Achtenet.al., namely the linearization of the
constitutive relation between pressure and density and the use of
an averaged isentropic bulk modulus. In section 3, we introduce
the effective displacement volume and analyze the energy
conversion in an ideal positive displacement machine based on
both extensive and intensive quantities of the converted energy.

Consequently, we obtain physically consistent and meaningful

representations of the overall efficiency, the volumetric

efficiency and the mechanical-hydraulic efficiency. Section 4

compares the results of this paper with the definitions of Achten

et. al. and Li and Barkei. Finally, section 5 gives the conclusion.

2. ENERGY BALANCE AND ASSUMPTIONS FOR
EFFICIENCY DEFINITIONS
The assessment of the energy conversion in a positive
displacement machine is based on the assumption that the
machine operates stationary on a time-averaged basis. Hence, the
first law of thermodynamics reads

Ps + Q = mAh,, (1)

with the mass flow m, the difference of the mass-specific
total enthalpy between machine outlet and inlet Ah,, the
mechanical shaft power P = 2mMgn being the product of the
shaft torque Mg and the rotational speed n, and the heat flow Q.
All quantities are considered to be averaged over time.
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In the case of a pump, Ps and Ah, are both greater than zero,
in the case of a motor, P5 and Ah, are negative. The mass flow at
the inlet and outlet of a machine are identical. In case of an
external leakage my, it is assumed to be redirected to the inlet of
the pump or the outlet of a motor respectively as shown in
FIGURE 1. Due to environmental constraints, real external
leakage is unlikely.

mhe,

PUMP MOTOR
FIGURE 1: FIRST LAW OF THERMODYNAMICS FOR AN
ADIABATIC POSITIVE DISPLACEMENT PUMP AND MOTOR.

The commonly used efficiency definition for positive
displacement machines is the isentropic efficiency. In fact, this
efficiency definition is used for all machines, turbo machines or
positive displacement machines with a compressible flow or an
incompressible flow, as long as the machine operates
adiabatically. Considering an adiabatic machine, the isentropic
efficiency n is defined as the ratio of the product of mass flow
and mass-specific isentropic and total enthalpy difference Ah,
and the shaft power

mAh o\
= - 2
n ( Ps ) ' @

The exponent +1 applies to pumps, the exponent - 1 applies
to motors. While the following sections focus on pumps, the
described procedure can be applied on motors similarly.

Dividing the mass-specific total enthalpy difference Ah;
into the isentropic fraction Ah,s and the loss fraction h;, we
obtain the following representation of the isentropic efficiency

ni=1-—= ®)

Equation (3) illustrates that the efficiency is a measure of
the dissipative power losses P,y = mhy.

Given an approximately incompressible flow and an ideally
rigid machine, the total enthalpy h, is

u2
he = +7+gz+e,

I3

2 @
u

ohy =p+97+992+93

equation (2) leads to the 1SO 4391:1984 efficiency
definition (the difference of kinetic energy u?/2 and potential
energy gz are neglected).

._ApQ _ ApQ
T Pg  2mMgn’

®)

with the pressure difference Ap and the volume flow Q.
Extending equation (5) with the displacement volume V, the
efficiency can be written as the product of the volumetic
efficiency 7, and the mechanical-hydraulic efficiency ny,n

. ApV
NMmh = 27TMS'

N = Nyvol'lmh» Nvol *= W' (6)

The displacement volume needs to be determined
experimentally on the basis of Toet’s method [12].

In the case of high pressure differences, the mass-specific
isentropic internal energy difference Ae; must not be neglected
which represents the converted energy due to compression.
Hence, the compressibility of the fluid needs to be taken into
account. At this point, we make the following two assumptions:

() The compression and decompression of the fluid is

isentropic (s = const) and can be described using
an averaged isentropic bulk moduls K or averaged
isentropic compressibility & = 1/ K.

(i) The relation between volume V or density ¢ and

pressure p of a fluid

. 1dV| _1dQ| @)
Vdp ' edp*
is linearized and yields
_ 1AV 1Ag o
o VAp oAp ®)

As can be seen in section 3.2, these assumptions are not
mandatory but can be easily extended by pressure dependent
compressibility x(p). However, the assumptions shorten the
efficiency representations derived from the isentropic efficiency
definition in equation (2), as can be seen in the next section.
Furthermore, lvantysyn und lvantysynova [13] state that the
resulting error due to linearization for common hydraulic fluids
is negligible.
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3. REPRESENTATIONS OF THE

DEFINITIONS

Based on the above assumptions, the next step is to
determine the numerator of the isentropic efficiency definition in
equation (2), which is the product of mass flow and the
difference of the mass-specific isentropic enthalpy Ahg (kinetic
energy u?/2 and potential energy gz are neglected). In section
3.1 we follow the common approach to determine the numerator
based on an analysis of an ideal positive displacement machine’s
cycle in the p-V-diagram. Section 3.2 gives the same result,
however, considering the more meaningful representation of the
ideal cycle with intensive; i.e. mass-specific, quantities in the p-
v-diagram. In section 3.3 we extend the equation of the
isentropic efficiency definition with the effective displacement
volume which leads to definitions of the volumetric efficiency
and the mechanical-hydraulic efficiency. This step is discussed
in the context of our understanding of an ideal positive
displacement machine.

EFFICIENCY

3.1 Cycle of an ideal machine based on extensive
guantities

Firstly and for reasons of clarity, we focus on the isentropic
enthalpy difference AH, of the conveyed fluid mass per cycle,
which is an extensive quantity. The isentropic enthalpy
difference is equivalent to the energy transferred between an
ideal machine and fluid per rotation. The time averaged mass
flow

N
m'_ffo m(t)dt %)

is given by the time integral of the temporal mass flow m(t)
and the cycle time T = 1/n. Hence, the time averaged mass flow
is the product of conveyed fluid mass per rotation mg and the
rotational speed n

m = nmg. (10)
This yields
mAhg = nAH;. (11)

FIGURE 2 shows the cycle of an ideal positive displacement
pump, i.e. loss-free and ideally rigid, with a dead volume V4
filled by a compressible fluid in a p-V-diagram. The shaded area,
given by the points abcd, states the isentropic enthalpy difference
AH; and needs to be calculated in order to derive a meaningful
efficiency representation based on the efficiency definition (2)
and equation (11). The dead volume results from the design of a
positive displacement pump and must be calculated on the basis
of the geometric pump dimensions. The displacement volume V
is determined experimentally at a pressure difference Ap = 0
(cf. [12]).

abc'd’ = Vg Ap

KkAp?
bed' = (Vg + Ve + Veff,l)T

Vett2

PRESSURE

A 2
add' = (Vg + Vae) -

=
N

abcd = abc’d’ — bec’ + add’

kAp
= DpVegra <1 - T)

0%y, Vae Vetta VOLUME

14

FIGURE 2: IDEAL CYCLE FOR A POSITIVE DISPLACEMENT
PUMP WITH A DEAD VOLUME AND A COMPRESSIBLE FLUID.

Beginning the ideal cycle at the top dead center, point d, and
the pressure p,, the dead volume decompresses, d—a, before
refilling the displacement chamber at the pressure level p,, d—a.
The difference between the compressed and expanded dead
volume is called Vg,. In the following, the fluid with the
effective displacement volume Vg, flows into the displacement
chamber, a—b. At the bottom dead center, point b, the total
volume V; of the displacement chamber is

Vi=Vaq+V =Vq+Vye+ Vesr1. (12)
The effective displacement volume Vg4 is given by
Vergr =V — Vae (13)
and equation (8) yields
Vae = Vakl|Ap] . (14)

Consequently, the effective displacement volume Vg4 can
be calculated from the experimentally determined displacement
volume V, the geometrically calculated dead volume V4, the
averaged isentropic compressibility & and the pressure
difference Ap. This is of major importance, as the
decompression of the dead volume and reduction of usable
displacement volume AV =V, =V — Ve, does not cause
volumetric losses or dissipation of energy. Instead, it underlines
the effective Volume Vg, being the relevant geometric quantity
in the partial efficiencies, the volumetric and mechanical-
hydraulic efficiency.

Further on, the total volume is compressed to the pressure
level p,, b—c, and displaced from of the displacement chamber
until the top dead center is reached again, c—d.
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The isentropic enthalpy difference AH; (abcd) can now be
calculated from the following areas, each described by its corner
points

abcd = abc’'d’ — bec’ + add'. (15)

Each area can be easily calculated based on the edge lengths.
These correspond to the pressure difference Ap, the effective
displacement volume Vg, and the volume difference due to
compression, b—-c, or expansion, d—a, calculated with
equation (8). At this point, it must be emphasized that the
compression, b—c and expansion, d—a can only be calculated
under the assumption of a closed control volume and, thus, a
constant mass. The results for the different areas are

abc'd” = ApVeg1,

KAp?
2 (16)

I

bee” = (Vg + Vge + Vegr1)

: cp?
add’ = (Vy+ Vge)

The area add’ = ada’ is calculated from the perspective of
compressing the decompressed dead volume V4 + Vg, a—d.
In this way, the compression energy can be represented by
Vg + Vg. Since the compression or decompression is assumed
to be isentropic, the absolute value of the converted mechanical
energy is equal, a—d = d—a. However, due to the assumption
made, namely the linearized relation in equation (8), there is a
deviation between expansion and compression:

area add’ VykAp?
ad e 1)
expansion (d—a) 2
area add’. _ (Vg + Vd'e)}EApz. (18)
compression (a—d) 2

This deviation results from the linearization error which is
negligible for the range of practical pressures and therefore not
considered any further. Equations (15) and (16) now leads to the
isentropic enthalpy difference AHg of the conveyed fluid mass
Megr = Verr 101 PET rotation

<A
abcd = ApVeg, (1 - Kz—p) . (19)

Equation (19) gives a short, meaningful and physically
consistent representation of the isentropic enthalpy difference
which can be used for the efficiency representation based on the
definition in equation (2). Before that, we derive the same result

based on the mass specific isentropic enthalpy, which is an
intensive quantity.

3.2 Cycle of an ideal machine based on intensive
guantities

The ideal cycle on the basis of the mass-specific volume
presented in FIGURE 3 leads to the mass-specific enthalpy. The
mass-specific representation is advantageous since it allows the
determination of the mass-specific isentropic enthalpy difference
which can be used directly for the definition of the efficiency (cf.
equation (2)). The mass-specific isentropic enthalpy difference
from state 1 to 2 yields

2 A KA
AR, = f vdp ~ _p(1 ——p). (20)
1 01 2

As can be seen, the introduction of the displacement volume is
not necessary.

Equation (19) can also be derived from the mass-specific
p-v-diagram shown in FIGURE 3. One obtains the isentropic
enthalpy difference AH (abcd) by multiplying the corresponding
fluid masses of the dead volume mg4 and the effectively conveyed
volume megr = 01 Vegrq

abcd = AHy = (Megs + mg)Ahg — mgAhg
= MegeAhs (21)

KAp
= Vs (1-5E).

2 A A M= mgqAhg
D Ahg = f vdp = ' (1 - Tp> P == (mq + megr)Ahg
1 01 abcd = megeAhs
& Qe } <
\ \
\
dp \ \
\ \
\ \
0 v L 1 v 0 14
0 1 /01 0 Vett1

FIGURE 3: MASS-SPECIFIC p-v-DIAGRAM FOR AN IDEAL
POSITIVE DISPLACEMENT PUMP AND A COMPRESSIBLE
FLUID.

At the same time, it is obvious that the mass-specific
isentropic enthalpy difference based on equation (20) can also be
calculated with a non-linearized relationship of pressure and
density (cf. equation (7)) and a pressure dependent
compressibility x(p).
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3.3 Efficiency representations
Following the efficiency definition according to
definition (2) and equation (20) one obtains

mAhs — Q,Ap (1 EAp)

= = 22
ZﬂMsn ZﬂMsn 2 ( )

T] .

The mass flow m = p,Q, is the product of the volume
flow Q, and the density g, at the pump inlet. Since the volume
flow is usually measured at the pump outlet, the volume flow Q;
can be calculated with equation (8) by

Q2

Q= m (23)

The derivation of representations of the partial efficiencies
succeeds based on equation (22) and the introduction of the
effective displacement volume Vg 4. Extending equation (22)
with the effective displacement volume Vg4 (cf. equation (13)
and (14)) in the numerator and denominator, the isentropic
efficiency yields

(24)

O ApVeff,l( ’EAP)
n= ———m=(1——).

TlVeff’I 27TMS 2

Consequently, definitions of the volumetric efficiency 1,
and the mechanical-hydraulic efficiency n,,, can be given by

KAp
N Qudp (1-55F)
vol ™=y kAp\’
et e tp (1-557) (25)
. ApVeff,l( ’mp) _ AHs
NMmh = > (1———) =
ZﬂMS 2 27TMS

At this point, one must understand that this approach goes
hand in hand with the idea of an ideal machine. The ideal
machine is characterized by the effective displacement volume
Vege1, the ideal volume flow Qegr; = nVegr, and the loss-free

energy transferred between machine und fluid, i.e. the isentropic
enthalpy AHg = ApViege, (1 — 'Czﬂ).

Thereby, the volumetric efficiency represents the ratio of the
volume flow at the inlet Q, to the ideal volume flow Q¢ 4. This
is equivalent to the ratio of the hydraulic power of the conveyed
fluid by the real machine to the hydraulic power of the conveyed
fluid by the ideal machine. The mechanical-hydraulic efficiency
represents the ratio of the loss-free energy transferred between
ideal machine and fluid to the shaft work of the real machine

during one rotation.

Furthermore, this approach allows to calculate volumetric
and mechanical-hydraulic losses. These losses are the difference
between ideal and real machines behaviour and can be given in
a physically consistent and meaningful way as follows:

(i) The leakage Qi = Qe — Q1 represents the difference
between the effective or ideal volume flow Qegr; = nVegrq
and the measured volume flow at pump inlet Q,. Hence, the

leakage causes the power 0SS Pioss1, = ApQy (1 — Ezﬂ).

FIGURE 4 shows the energy loss due to leakage as a
marked area (b'bcc’) in ap-V-diagramm. This is the energy
transferred to the fluid volume Vi = Vg, — Q;/n and
which is lost due to leakage. This representation is based on
the idea that, in the case of a pump, leakage occurs after the
energy is transferred from machine to the fluid. It does not
matter if the real machine’s leakage behavior is different as
the leakage is a calculated quantity based on the ideal
volume flow. Furthermore, it is consistent with our
approach assuming a closed control volume for the
compression and expansion presented in FIGURE 2.

(i) The friction torque Mp, = Mg — Myyq resulting from
friction and momentum losses of the conveyed fluid is
calculated from the difference of shaft torque Mg and

hydraulic torque Mg = s M(1 - %). This

2T 21

results in the power 10SS Pyoss mn = 2mMppn. Similar to the
leakage, the friction torque is a calculated quantity based
on the loss-free energy, i.e. the isentropic enthalpy AHg,
transferred between ideal machine and fluid.

KAp
abed = ApVegeq (1 — -5
() A
w bz b’bec’ = ApVy, <1 - %)
2
=)
7
L Ap
[a g
o
P1 pcl b
0
0 Q./n 2 VOLUME

Vett
FIGURE 4: ENERGY LOSS DUE TO LEAKAGE REPRESENTED
IN A p-V-DIAGRAM.

Equations (22) and (25) provide representations of the
overall efficiency, the volumetric and the mechanical-hydraulic
efficiency which measure the energetic quality of positive
displacement pumps with a dead volume in a physically
consistent and meaningful way. At the same time, these partial
efficiencies can also be quantified based on the volumetric
losses Qy, and the friction torque M,

QL

)
NVetrq

Nvol = 1= (26)
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1
Tmh =TI Mgy
1-kAp/2ApV,

If the dead volume is negligibly small or the flow is
approximately incompressible due to low pressure differences of
the pump, the effective displacement volume Vg, and the
experimentally determined displacement volume V will be
identical. Furthermore, kAp « 1 and the efficiency definitions
of 1SO 4391 according to equations (5) and (6) can be applied.

4. COMPARISON OF EFFICIENCY

REPRESENTATIONS IN THE LITERATURE

As stated in the introduction the motivation of this paper is
to contribute to the ongoing and fruitful discussion about
meaningful and physically consistent efficiency representations
of positive displacement machines with a dead volume and a
compressible flow which was started at FPMC 2019 by Achten
et. al [2].

Against this background, the overall efficiency and partial
efficiency representations derived in this paper are compared to
the efficiency representations given by Achten et. al. and Li and
Barkei [4]. TABLE 1 summarizes all efficiency representations
in the notation of this paper considering a pump with one single
displacement chamber.

Achten et. al. make new proposals for the overall and the
mechanical hydraulic efficiency. They also calculate the
isentropic enthalpy AHg from the ideal cycle of a positive
displacement machine (cf. FIGURE 2) but derive a sightly
different formula resulting in a different representation of the
mechanical efficiency. This is due to the calculation of the area
add’ (cf. FIGURE 2) from the perspective of an expansion (see
equations (17) and (18)) and due to the linearization error. Hence,
the differences for mechanical hydraulic efficiency
representation are negligible. On the other hand, Achten et. al.’s
definition of the overall efficiency is inconsistent with the
definition of the mechanical hydraulic efficiency. They integrate
the inner energy (see [2] equation (5)) under the assumption of a
mean density @ which is approximately ¢ = o, = 0, (see [2]
equation (6)). This assumption is neither transparently presented
nor consistent with their assumption of a pressure dependent
density regarding the cycle of an ideal positive displacement
machine (see [2] FIGRUE 2)). In fact, Achten et. al. consider the
overall efficiency and the mechanical-hydraulic efficiency
independently of each other in contrast to this paper. At the same
time, they question the validity of a volumetric efficiency
definition and, thus, do not provide one. A physically consistent
volumetric efficiency definition that fulfills n = nyLnnve and
that is based on the idea of an ideal and reference machine is not
achievable due to their inconsistent integration of the inner
energy. In summary, they apply the idea of an ideal machine in
the context of their mechanical-hydraulic efficiency definition,
but and in contrast to this paper not to the volumetric efficiency
definition and volumetric losses.

Li and Barkei give generally valid and consistent definitions
of the overall efficiency, the volumetric and the mechanical
hydraulic efficiency. These definitions contain their newly
introduced quantity ® which is the volume-specific enthalpy

AH
b = S

Vet 2

(27)

In this way, they do not make any assumptions regarding the
fluid properties, namely the compressibility of the fluid, e.g. by
using an averaged bulk modulus or by linearizing the relation of
pressure and density. However, this is why their approach results
in efficiency representations that are slightly more difficult to
understand. Regardless of this, Li and Barkei’s representations
are identical to the representations derived in this paper when
taking into account the assumptions made in section 2.

5. CONCLUSION

On the basis of the most general efficiency definition,
namely the isentropic efficiency, transparent assumptions
considering the fluid properties and the p-v diagram as well as
the idea of an ideal and reference positive displacement machine,
we derive physically consistent and meaningful representations
of the overall, the volumetric and the mechanical-hydraulic
efficiency. At the same time, these representations fulfill the
requirements for a high acceptability, as they are easy to apply,
practical for users, and based on a transparent deviation. These
representations are consistent with the definitions of Li and
Barkei [4] and may serve as a template for a revision of
ISO 4391:1984 [1]. In particular, the use of the effective volume
Verr1 (cf. equation (13) and (14)) is the basis of a short and
meaningful efficiency representation.
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TABLE 1:EFFICIENCY DEFINITIONS OF PUMPS.

volumetric efficiency

Achten et. al: no definition
. . 0, Q,
Li and Barkei: =—=
vol NWVerrr  NVetr2
this paper: n ’=&= Q2
paper: T Wy Vet
mechanical-hydraulic efficiency
Achten et. al: = AV [1 A —<1+Vd)]
chten et. al: nmh-—ans P\t
Voee o @ (Ap,
Li and Barkei: Ny = Vet2® (8P, P1)
27TMS
(Ap, py) f “Vap = Als
D, P1) = p =
Y Vera )y Vett 2
this paper: = Sl (1 - iEA_p) -
paper: Mhmh ™= 50 2 ) = 2nmg
_ DpVegr, (1 — KAp/2)
~ 2nMg (1 - KkAp)
overall efficiency
P2\ _
Achten et. al: 7= p2Q> (1 t2 ) P10
ZﬂMsn
d(Ap,
Li and Barkei: n = Q®@p.p)
ZﬂMSn
. ApQ, EAp)
: = 1——
this paper n 2nM5n< 3
_ ApQ, (1-KkAp/2)
" 2nMgn (1 — ikAp)
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4. First rebuttal of Christian Schénzle and Peter Pelz to the first review of Peter
Achten and Robin Mommers Note_210805_Response_Review_AchtenEtAl (first
rebuttal, received on August 5, 2021)



Dear Peter Achten,
Dear Robin Mommers,

thank you very much for your structured and detailed review. We can see that a lot of effort was put
into your review and that the topic is of major importance to you, as it is to us, too. We find your
non-anonymized review courageous and in the spirit of an open and constructive discussion. We
appreciate that very much.

Nevertheless, different views come to light, which are inherent in science and have to be endured by
the opposing position. This applies all the more to the topic of efficiency, since the efficiency is a
defined quantity.

At this point, it is important for us to name our three guiding principles that guide us in our
argumentation:

i Definitions are never wrong. Instead, appropriate criteria for definitions are their
meaningfulness, their physical consistency and their acceptance. For efficiency definitions to
be accepted, they must be easy to apply, practical for users, and based on a transparent
derivation.

ii.  The definition of partial efficiencies based on the extension of the isentropic efficiency
definition with the displacement volume goes hand in hand with the idea of an ideal, i.e.
loss-free, machine that is characterized by its displacement volume. This allows the
calculation of the converted energy per rotation as well as the volume flow of an ideal
machine, which are essential for the partial efficiencies. Thus, the partial efficiencies have a
high practical value and provide a starting point to modeling the overall efficiency. Modeling
succeeds on the basis of loss analysis, as systematically started by Wilson by means of
tribology and fluid mechanics.

iii.  The idea of using an ideal machine as a reference is a proven and well-known approach. Four
prominent examples demonstrate this: firstly, the considerations of Sadi Carnot on an ideal
heat engine leading to the definition of Carnot's efficiency, secondly, the considerations of
Betz on the upper limit of wind power for wind turbines, thirdly, the considerations of Pelz
on the upper limit for hydropower in an open-channel flow and, fourthly, the considerations
of Turing on an abstract machine based on mathematical model, i.e. the Turing machine.

The acceptance of definitions is decided by a research and industry community, in the case of an
efficiency definition finally by an ISO committee. There may be different views and opinions on the
meaningfulness of definitions, e.g. the definition of volumetric efficiency, which may not be
dispelled. However, there should be an agreement on the physical consistency, as this is based on
axioms such as the first law, material laws such as a compressible fluid with an isentropic change of
state and model assumptions or simplifications such as linearization. This provides a transparent
argumentation on the basis of which the acceptance of a definition can be decided. This is the spirit
in which our paper was written and, in this spirit, we are pleased to respond to your review.
Moreover, you find our revised paper including yellow highlighting of the revised passages.

Christian Schanzle and Peter Pelz



Response to your introduction and consensus

We agree with your motivation, your goals and with your view on model assumptions, as also
transparently set out in our paper. Furthermore, we agree that the differences between your and our
mechanical-hydraulic efficiency definition is due to the linearization error and, thus, the differences
for mechanical hydraulic efficiency representation are negligible.

However, we are very critical of one of your basic assumptions that we do not want to follow. In our
opinion, this assumption reveals your inconsistent argumentation:

Your derivation of the overall efficiency definition is inconsistent with the definition of the
mechanical hydraulic efficiency. You integrate the inner energy (see your paper equation (5)) under
the assumption of a mean density ¢ which is approximately ¢ = ¢; = 0, (see equation (6)). This
assumption is neither transparently presented nor consistent with your assumption of a pressure
dependent density (or volume) regarding the cycle of an ideal positive displacement machine (see
your paper figure 2)). If your argument of a negligible error is made for equation (7) we do not
understand why this should not also apply to figure 2 and equation (13) in your paper?

Whereas we define the partial efficiencies by extending the overall efficiency definition with the
effective displacement volume, you consider the overall efficiency and the mechanical-hydraulic
efficiency independently of each other. A consistent volumetric efficiency definition that fulfills n =
Nmh7vol @and that is based on the idea of an ideal and reference machine is not achievable due to
your inconsistent integration of the inner energy.

Our commonly used approach extending the overall efficiency definition with the displacement
volume goes hand in hand with the idea of an ideal machine. The ideal machine is characterized by
the effective displacement volume V¢4, the ideal volume flow Qery = nVegrq and the loss-free

energy transferred between machine und fluid, i.e. the isentropic enthalpy AHg = ApVeg 4 (1 -

RA . - . .
Kz—p). Thereby, the volumetric efficiency represents the ratio of the volume flow at the inlet Q; to the

ideal volume flow Qs 4. This is equivalent to the ratio of the hydraulic power of the conveyed fluid
by the real machine to the hydraulic power of the conveyed fluid by the ideal machine. The
mechanical-hydraulic efficiency represents the ratio of the loss-free energy transferred between
ideal machine and fluid to the shaft work of the real machine during one rotation.

This commonly used approach allows to calculate volumetric and mechanical-hydraulic losses. These
losses are the difference between ideal and real machines behaviour and can be given in a physically
consistent and meaningful way as follows:

(i) The leakage Qr, = Qefr1 — Q1 represents the difference between the effective or ideal

volume flow Qgfr1 = NVegr 1 and the measured volume flow at pump inlet Q;. Hence, the

leakage causes the power loss Pjoss1, = ApQy, (1 - %). Figure 4 in our revised paper

shows the energy loss due to leakage as a marked area (b'bcc’) in a p-V-diagramm. This
is the energy transferred to the fluid volume V, = Vg1 — Q1 /n and which is lost due to
leakage. This representation is based on the idea that, in the case of a pump, leakage
occurs after the energy is transferred from machine to the fluid. It does not matter if the
real machine’s leakage behavior is different as the leakage is a calculated quantity based
on the ideal volume flow. Furthermore, it is consistent with the approach assuming a
closed control volume for the compression and expansion considering the ideal cycle
(see figure 2 in your and our paper).



(i) The friction torque M, = Mg — Mpyq resulting from friction and momentum losses of

the conveyed fluid is calculated from the difference of shaft torque Mg and hydraulic

AHg  ApV RA . .
torque Mhyd = Z—HS = % (1 — Tp) This results in the power loss Pjgss mn =

2nMpn. Similar to the leakage, the friction torque is a calculated quantity based on the
loss-free energy, i.e. the isentropic enthalpy 4Hg, transferred between ideal machine
and fluid.

In our understanding, you apply the idea of an ideal machine in the context of your mechanical-
hydraulic efficiency definition, but and in contrast the common approach not to the volumetric
efficiency definition and volumetric losses.

Response to Differences

To 1.: Our consideration is valid for all pumps and motors, also with external drainage, as can be seen
in our figure 1 and our chosen system boundary.

To 2.: Your argumentation is from a standpoint of an application. The efficiency definition is from a
standpoint of a standardized procedure under standard conditions. A higher pressure at the inlet is
possible, the question is whether this must be considered for the standardized efficiency
measurements. Nevertheless, we see no limitation for our consideration.

To 3.: Please see “Response to introduction and consensus”. Our understanding of the losses is
different to your understanding. Losses can only be calculated when we have an idea of an ideal and
reference machine. The losses are the difference between real machine behaviour and ideal machine
behavior. Your standpoint only focuses on real machine behaviour and on details which may be
correct but neglect the fact that the losses depend on the ideal machine bahaviour as well.

To 4.: see “Response to introduction and consensus”.
To 5.: see “Response to comments 15-17” and “Response to introduction and consensus”.

To 6: Please consider equations (20) and (21) as well as figure 3 in our revised paper. In our opinion,
the mass-specific representation of the ideal cycle is more meaningful and a discussion of
linearization errors become superfluent. One can argument based on the fluid masses of the dead
volume and the conveyed fluid.

Response to Comments

To 1.: Ve can be determined as stated in our revised paper by equations (13) and (14).

To 2.: No. We prefer our representations of the partial efficiency definitions based on V¢ because in
our opinion they are shorter and more meaningful. This is illustrated by equations (20) and (21) as
well as Figure 3.

To 3.: Your suggested equation is similar to ours. In our consideration 114 und m, are equal due to
our chosen system boundary (see Figure 1). We do not see a benefit in your suggested equation. In
addition, the challenge becomes apparent when m; und m, are not equal. A calculation of the mass-
specific internal energy difference Au requires the assumption of a constant mass and a closed
control volume. You solve this challenge introducing a mean density which is inconsistent with your
consideration of the ideal cycle.



To 4.: Thank you for this comment, we corrected this notation.

To 5.: It is possible, but we aim at a representation of AH based on Veg. This is shown in figure 2 as
well as figure 3. In our opinion, in particular figure 3 makes it easy to understand why V¢ is the more
meaningful quantity.

To 6.: No, we do not agree. Your introduction of a mean density is not transparent and you do not
give an equation to calculate the mean density. Furthermore, it is not consistent with the
consideration of the mechanical hydraulic efficiency. Even if the assumption of a mean density only
leads to slight deviations, it results in inconsistent representations of the overall and mechanical
hydraulic efficiency.

To 7.: Yes.
To 8. We prefer our representation of abcd.

To 9.: A definition is never wrong or impossible. We present our understanding of the volumetric
efficiency and volumetric losses in detail in our revised paper and above (see “Response to
introduction and consensus”). The definition of volumetric losses and of a volumetric efficiency in the
context of the idea of an ideal and reference positive displacement machine is consistent with our
understanding of the mechanical hydraulic efficiency.

To 10.: see 9
To 11.: see “Response to introduction and consensus” and 3.
To 12.: see “Response to introduction and consensus”

To 13.: see “Response to introduction and consensus”. Furthermore, we do not assume a mean
density (see equation (7) und (8) in our paper)

To 14.: see “Response to introduction and consensus”.

To 15 - 17.: We do not mention the addressed statements anymore. They had been referred to your
statement questioning the validity of the volumetric efficiency. For the rotary positive displacement
pump manufacturers we cooperate with, the volumetric efficiency is more important than the
mechanical hydraulic efficiency especially at a low fluid viscosity. Furthermore, the customer is
usually interested in the volume flow for his application. This information is given by the volumetric
efficiency.

To 18.See 1. and 2.

To 19.: see 9.

To 20. Yes. We make this statement in our revised paper.
To 21.: We do not see a mistake in our approach.

To 22.: Please consider our argumentation. Firstly, we specify the system boundary and apply the
first law of thermodynamics, secondly, we define the overall efficiency that is consistent with the
isentropic or adiabatic efficiency (commonly applied to all kinds of fluid energy machines), thirdly, we
make assumptions concerning the fluid, fourthly, we extend the overall efficiency definition with the
effective displacement volume. This fourth step goes hand in hand with the idea of an ideal and
reference machine as discussed above (see “Response to introduction and consensus”). Your
approach defining the mechanical hydraulic efficiency is also based on this idea. Whereas you follow
this idea only for the definition of the mechanical hydraulic efficiency, we apply this idea also to the



volumetric efficiency definition. Moreover, our view on the partial efficiencies results from the
overall efficiency definition whereas you consider the overall and the partial efficiency independently
of each other.



5. Comment on mass density (send by Robin Mommers on August 6, 2021 to the
authors)



The following contains an explanation of the derivations that are shown in “Achten et al. (2019)
Measuring the losses of hydrostatic pumps and motors: A critical review of 1s04409:2007”.
Equation numbers are references to the equations in this paper. This explanation concerns eq.(1)-
(7), and focuses on the mass density of the hydraulic oil.

Presented method
From eq.(1)-(3), it follows that we are looking for a definition of u;, which describes the specific

internal energy of oil in state i (with i = 1 or i = 2 in this case). This definition is found to be the
differential function shown in eq.(4) which is integrated in eq.(5).

Since we need a second state to calculate this integral, we choose a state at which the energy is
known to be very low (state 0 with p,, = 0 bar). For simplicity, we indeed assume that the mass

density in this integral is constant, but not to a mean density, but the mass density in state i. So
perhaps, a clearer way to write eq.(5) is the following form:
K p
u; — Uy = _J pdp —  u;= = (a)
Pilks Po 2pil(s
In other words, we use a different mass density for oil from state 1 and state 2. As you mentioned,
this indeed is not perfectly accurate, but we think it results in a decent estimation of the internal

energy. Substitution into eq.(3), cancels the mass densities p; and p,, which results in eq.(6).

Alternative

More accurate would be to include changes in the density in the integral of eq.(5), as you
mentioned. From the assumption that we have a constant bulk modulus K, compressing a
volume between state 1 and state 2 can be described as:

V1P2[;P1=V1_V2 S ov=V, l_pszl ()

N N

with V, the volume at pressure p;, and V, the volume once V/ is compressed to p,. Using mass
densities at the two states and the fact that we have a constant mass, we get:

m m P> — D S py=p K, ©
— 2 -_— 1 —
P2 P~ K K, —(p,—py)

= 1=

Suppose that at state 0, the pressure p,, = 0 bar, and the mass density equals p,. We get the
following function for the mass density at pressure p:

(d)

p(p) = p -

=pol =

Ks 4

The internal energy integral from state 0 to state i, as shown in eq.(a) above, now results in the
following:

pi rip(K — pi
p p (K, ~»p) 1 .
U;— Uy = J —de = J #dp =% p(K,—p)dp (€)
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Since we assumed p;, = 0 bar, this results in:
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The function of p* shown in eq.(f), looks a lot like the function of p we found in eq.(f). The
difference is found to be:
i _ K-pi
* 5 2
Pi Ks - ?pl
Following the same reasoning as in paper, this results in the following simplified function for the
hydraulic power:
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If we compare this factor a;‘ to the a, factor set in the paper in eq.31, and we assume an

isentropic bulk modulus of 1.76e9 Pa, we get difference of less than 0.015% at 500 bar, as is
shown in the following graph.
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In our opinion, this difference is so small that it justifies using mass densities p; and p,, instead of
more realistic functions.



6. Response by Peter Achten and Robin Mommers to the first rebuttal:
'note_210805_Response_Review_AchtenEtAl’ (send on August 13, 2021 to the
organizers of the FPMC and to the authors)



Response to
‘note_210805_Response_Review_AchtenEtAl’

We will only respond to the main points:

1. “Definitions are never wrong” (pag 1), “A definition is never wrong or impossible” (pag. 4)
2. We are (physically) not consistent in our approach for determining the overall efficiency.
3. We assume the density to be constant

4. Because of this inconsistency, we are not able to define a volumetric efficiency

Comments to point 1

In principle, these are correct statements: you can make any definition, as long as you are clear about
the parameters and their meaning. For instance, you can define an efficiency ratio of the number of
storks in a country and the number of babies born in a year. In 2019 there were about 2350 storks in
the Netherlands. In that same year, 167.588 babies were born in the Netherlands. That is an amazing
‘efficiency’ of 71 babies per stork. Not that this is relevant, but yes, you could theoretically make such
an efficiency definition. This efficiency is a ‘defined quantity’ and it is ‘easy to apply, practical for users,
and based on a transparent derivation’.

But that is of course not the point. We started this discussion because we believe the current ISO-
definitions need a revision, resulting in better, physically consistent definitions. In our 2019-paper we
write:

“ISO 4409 is inconsistent in the calculation of the effects of oil compressibility: while it requires
consideration for oil compressibility in the flow rates, it does not demand the same correction for
the efficiency definition”

Because of this inconsistency, the current efficiency definitions result in the possibility that the
efficiency can become larger than 1 (or 100%), which would imply that the pump or motor would have
a negative loss. We believe we both agree that in that case, the definition is wrong, despite your remark
that ‘definitions are never wrong’.

Also in your comments, as well as in your paper, you often mention the need for (physical) consistency.
According to you, our analysis is inconsistent i.e. wrong. Also here, the discussion is simply about
good or wrong definitions, for which ‘consistent’ and ‘inconsistent’ are mere euphemisms.

Also in your paper, you write

“However, the overall efficiency definition and the definitions of the partial efficiencies, namely the
volumetric efficiency and mechanical-hydraulic efficiency are physically consistent only for an
incompressible flow with the density p=const. If the machine operates at high pressure levels the
compressibility of the fluid and the dead volume of a pump must be taken into account. On this
point, ISO 4391:1984 is physically inconsistent.”

But that is only part of the problem. The other problem with the current ISO-definitions is that part of
the energy which is compressed and delivered by the pump is actually leaving the pump in the form of
a compressed oil flow. In motors, this compressed oil flow is received as an extra energy input. The
pump and motor cycles are therefore not closed cycles, but they are open. More about that later.
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Comments to point 2
On page 2 you write:

“Your derivation of the overall efficiency definition is inconsistent with the definition of the
mechanical hydraulic efficiency. You integrate the inner energy (see your paper equation (5))
under the assumption of a mean density g which is approximately g = p1= 02 (see equation (6)).
This assumption is neither transparently presented nor consistent with your assumption of a
pressure dependent density (or volume) regarding the cycle of an ideal positive displacement
machine (see your paper figure 2)). If your argument of a negligible error is made for equation (7)
we do not understand why this should not also apply to figure 2 and equation (13) in your
paper?”

However, as we have mentioned in our review, our definition of the overall efficiency is nearly identical
to yours. To repeat our earlier remarks (we have renumbered the equations in order to make a new
sequence for this document):

Furthermore your equation for the overall efficiency can be rewritten as follows:
_ ApQ, (1-KAp12)  ApQ, (1+KAp/2-KAp)
2 M (I_EAP) 2nMg (l—l?Ap)

_ ApQ, I+ KAp/2
2rMg\ (1-KAp)

(M

This is rather similar to our equation:

n=p2Q2(1+l?Ap/2)—plQl @)
2w M

If, for the moment, we ignore the fact that we split p2 and p1, whereas you consider the pressure
difference Ap, than our correction term is:

(1+icAp/2) ©)

whereas yours is:

KAp /2
[”owa X

Again using the parameters mentioned in Eq(6), our correction factor has a value of 1,0120 and
yours of 1,0123, a difference of 0,0003.

We used the following values:
K=6E-10 [Pa™']
Ap =400 [bar]=4E7 [Pa] (5)
V,/V=0.7[]

In your current paper you need to substitute eq. 23 into eq.24 to get the same as the above equation

(7). This shouldn’t come as a surprise. We follow the same path as you do. We still disagree that you
assume ApQ = p2Q2 - p1Q+ (more about in our comments on point 4) but aside from this, the result is
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nearly identical. Which means that our, according to you ‘inconsistent’ approach results in the same
value as your ‘consistent’ approach, which can be considered remarkable.

Comments to point 3

This seems to have become the core of your comment to our analysis. As you write in section 4 of your
paper:

“On the other hand, Achten et. al.’s definition of the overall efficiency is physically inconsistent.
They integrate the inner energy (see [2] equation (5)) neglecting the pressure dependent density o.
Consequently, this leads to a physically inconsistent result of the hydraulic power as well which is
the nominator of the overall efficiency.”

However, we believe you misunderstand our analysis at this point. As was also explained in more detail
in the e-mail we sent on August 6th, when going from eq.5 to eq.6 we don’t use a constant mass
density. We use eq.5 to estimate the amount of internal energy at a certain state . Since we need to
compare the energy level to another state, we choose a state at which the energy is known to be very
low (state O with po = 0 bar). For simplicity, we indeed assume that the mass density in this integral is
constant, but not to the mass density in state 0, but the mass density in state i:

Lo pi
—J pdp = u =

u; — l/lo = = —
l piK Po 2piKs

()

This indeed is not perfectly accurate, but we think it is a decent estimation of the internal energy. If we
implement this into eq.3 of our 2019-paper, the mass densities cancel out, which results in eq.6. More
accurate would be to include changes in the density in the integral of eq.5 as you mentioned, but that
would only result in a very small change of the end result, which we think can be neglected. It should
also be noted that you do the same in your analysis.

You could have seen from our equations that we are not assuming the density to be constant.
Otherwise we wouldn’t need the bulk modulus and we couldn’t have an isentropic compression and
expansion in the ideal cycle. Like you do, in egs.7 and 8 in your paper, we assume the relation between
volume V or density ¢ and pressure p of a fluid to be described by the bulk modulus, which implies that
the density is by definition variable. This still leaves room for differences in the choice of the reference
volume (Vefr in your case versus V in our paper), but that doesn’t change the end result, as has been
made clear before.

Comments to point 4

This is another important point in your paper. At the end of your paper, in section 4, you write

“A physically consistent volumetric efficiency definition that fulfils n = nmn nvol and that is based on
the idea of an ideal and reference machine is not achievable due to their inconsistent integration
of the inner energy. In summary, they apply the idea of an ideal machine in the context of their
mechanical-hydraulic efficiency definition, but and in contrast to this paper not to the volumetric
efficiency definition and volumetric losses.”

However, in our 2019-paper we write:
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“It should be noted, that the definition for the volumetric efficiency is not based on energy or
power levels, but compares flow rates. In order to calculate a volumetric efficiency based on
power or energy, both the measured and the theoretical flow could be multiplied with a pressure,
but then the question is which pressure level should be used for the numerator and for the
denominator. Any choice would be an arbitrary choice, and may question the validity of the
definitions.”

Furthermore, in our review of you paper, we write:

“We didn’t provide a definition of the volumetric efficiency because we couldn’t find a definition
which was physically consistent with the inner processes in hydrostatic pumps and motors. You
can make and define a flow ratio, but that is not the same as a power or energy ratio (which was
the topic of our paper).

The fact that we didn’t come up with a definition of the volumetric efficiency has nothing to do
with our definition of the overall efficiency. After all, in theory, it could be possible to make an
equation in which our overall efficiency is divided by our definition of the hydro-mechanical
efficiency, which would then result in a ‘volumetric efficiency’ which fulfils n=nmn nvo. But this
would not make any sense due to the reasons mentioned before.”

Trying to come to a consensus in this discussion, we listen and read your comments with great care.
We believe it would help us both, if you would carefully read the above statements and respond to
them.

We believe we have reached a consensus about the hydraulic-mechanical losses and efficiency
definitions. As you also mention in your response to our review:

“the differences for mechanical hydraulic efficiency representation are negligible."

We also believe we have reached a consensus about the calculation of the overall losses and efficiency
definitions, although you still seem to rescind this. But, as mentioned before, we can’t see any
fundamental differences between your analysis and ours. The differences in the numerical end results
are negligible and are due to different points of linearisation.

However, we believe you are making a mistake when you believe that all volumetric losses originate
from the same Ap: the pressure difference between the high pressure side and the low pressure side of
the pump or motor.

In your paper (Fig. 1) you consider the same mass flow and the entrance and exit:

In order to fulfil this balance you assume that all volumetric losses inside the pump or motor will
eventually end up at the low pressure side of the pump. In reality, this means that you need a
pressurised case or housing, otherwise, the internal leakage will not flow to the low pressure side.
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However, then you neglect the reality that many pumps and motors don’t have an internal case drain,
but instead an external case drain. And also that in many applications, for instance in all hydrostatic
drives, the low pressure is substantially higher than the case pressure. In these pumps, the leakage in
the housing must be directed to the external drain.

As aresult, it is no longer true that the mass flow at the exit equals the mass flow at the entrance, as
you show in Figure 1 of your paper. In your comments on our review you write:

“Your argumentation is from a standpoint of an application. The efficiency definition is from a
standpoint of a standardized procedure under standard conditions. A higher pressure at the inlet
is possible, the question is whether this must be considered for the standardized efficiency
measurements. Nevertheless, we see no limitation for our consideration.”

The answer to your question is confirmative: yes, of course you need to consider how the pumps and
motors are applied. The standards should reflect the reality, not the other way around. However, this is
what you do when you write:

“In our consideration 1 und e are equal due to our chosen system boundary (see Figure 1). We
do not see a benefit in your suggested equation. In addition, the challenge becomes apparent
when 71 und 12 are not equal.”

You want your definitions to be:

“...valid for all pumps and motors, also with external drainage, as can be seen in our figure 1 and
our chosen system boundary”

It should be clear by now that this is not possible, following your analysis.

An other consequence of the external leakage drain in many pumps and motors, is that the leakage
can come from both the high pressure side and the low pressure side. This is especially relevant for
closed circuit pump and motors, in which the low pressure is around 20 bar, and the case pressure
around 0 bar. Please, explain to us how you can tell where the measured leakage is coming from? We
can’t, which was one of the reasons why we decided not to make a volumetric efficiency definition.

Conclusion

Considering the discrepancies and the lack of sufficient answers and responses to our first review, we
believe we need more time to finalise our discussion. We will be more than happy to continue the
debate and are open for any additional comments from your side.

The paper in its current form does not deserve the mark of a peer reviewed paper, at least not having
us as reviewers. We will therefore inform the organisers of the FPMC2021, and advice them to
withdraw your contribution from the 2021 conference.

We have reached consensus about several points:

1. We both agree that there is need for a revision of the current efficiency definitions for pumps and
motors, as defined in ISO-standards;

2. We both come to about the same definition for the hydraulic-mechanical efficiency. The differences
are negligible.

Then there is a point where we (the reviewers) are certain that we reached a consensus, but you
completely and strongly disagree:
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3. We (the reviewers) also believe that we have reached the same level of consensus about the overall
efficiency and loss definitions. We regret that you don’t share this conclusion in your last paper. We
also regret that you didn’t respond to the content of our numerical example as mentioned in our
review (which is repeated again in this second review (see the comments to point 2).

Finally we continue to have a disagreement about the definition of the volumetric efficiency.

4. Contrary to your statements we decided not make a definition of the volumetric efficiency because
there is not a method to assess the pressure level from which the leakage originates. You consider
all leakage to originate from the high pressure side. That is not the reality for a large group of
pumps and motors.

August 13, 2021
Peter Achten and Robin Mommers (INNAS)

PS: One last word about point (jii) in the introduction of your paper. If you are looking for a Carnot-like
maximum boundary of the efficiency of a pump or motor, then the answer is simply 100%. Like electric
motors or gear transmissions, the transformation in hydraulic pumps and motors does not, at least in
principle, involve any loss of entropy. We have already measured values up to 98%, so we are getting
close. Although we are also realistic that we won’t achieve 100%, but neither does an electric machine
or a gear transmission.
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7. Response from Christian Schénzle and Peter Pelz to the previous document
Note_210818_Response_Review_Achten_Pelz_schaenzle (received on August
21, 2021)



Dear Dr Peter Achten, Dear Robin Mommers,

In the following, you find our response to your review that we received on August 13th, 2021. At the
beginning, we want to make a statement considering the review process so far and, secondly, give a
short summary of the consensus and differences.

Statements to review process

On June 15 we got the notification from ASME that the review process for our paper was completed
and that our paper was accepted. Two reviewers were very positive, one reviewer was neutral and you
were very critical. This might be because we noted in your paper weak points regarding the three “c”,
i.e. conciseness, consistency and clearness, cf. Heinrich Hertz’'s book “Mechanics” and also Occam’s
razor. We further noticed in the review process a different understanding what are physical axioms,
definitions, models. From an engineering point of view, we missed the difference of function and
quality and the different importance of function and quality for the various stakeholders, i.e. OEM,
owner-operator, manufacturer, society, science.

For us the most severe point is the following: You try to convince the community that the volumetric
efficiency should be banned (once again this word). There are three reasons why the volumetric
efficiency is of value for different stakeholders:

1. OEM, Owner-Operator: Separating function and quality (energetic quality, ....) as an engineer
should do, the volumetric efficiency gives the pump or motor function or characteristic. There
are many kinds of positive displacement pumps. To give you an example: For screw pumps the
function is a required volume flow and the most important characteristics for the customer is
the volumetric efficiency of the pump.

2. Manufacturer: Modelling the total efficiency of a machine requires the separation of
volumetric losses and internal pressure losses. Hence, for the modelling engineer the
separation in mechanical hydraulic and volumetric efficiency is beneficial.

3. Scientist: It is indeed possible to show that the volumetric efficiency is an energetic measure
as we did in our paper which is of interest from a purely scientific point of view. But also the
task of modeling the overall efficiency it is beneficial to focus on volumetric losses and pressure
losses separately.

Looking at all stakeholders in the community the first point is obviously the most important one. There
should be very clear, objective, convincing and consistent reasons and arguments to tell the customer
that the volumetric efficiency is outdated. Your argumentation in your paper and in this dialog is from
a scientific point of view too weak to support this.

Both you and we put a lot of input and effort into the open review process for the sake of the
community as well as for our own’s sake. Once again, we thank you for your comments.

In our understanding we did all that was expected from us and where we agree to the suggestions for
improvement. In fact, there are no errors in our paper as you suggested in your last email. This was
confirmed by the three other reviews. So, we disagree with you in some points and that is perfectly
normal and the full right of authors. In no way was the review a request to conduct an intense review
process with you as also stated by Perry Li in his email on 16 August. Of course, we acknowledge the
fruitful discussion so far.
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In our presentation at the FPMC 2021, we will address the consensus and the differences stated below
in a fair, respect full and open way. We will make clear three paper exist that critically examine the
efficiency definition for positive displacement machines:

[1] Achten et al.: “Measuring the losses of hydrostatic pumps and motors: A critical review of
1s04409:2007”, FPMC 2019

[2] Li and Barkei: “Hydraulic effort and the efficiencies of pump and motors with
compressible fluid”, FPMC 2020

[3] Schanzle and Pelz: “Meaningful and physically consistent efficiency definition for positive
displacement pumps - continuation of the critical review of iso 4391 and iso 4409”,
FPMC 2021

All three paper [1] to [3] are in a nice historical row taking up a discussion. The Fluid Power Community
is critical and thoughtful. Thus, the community is able to make up its own mind about the content and
the scientific discussion based on the three papers mentioned above. Against this background, a
complete consensus between us is not necessary and may be not achievable. Instead, integrating the
community in our ongoing discussion is the next logical step.

To make our discussion public to the community we suggest to publish our discussion to date (e.g. via
TUBIiblio our University Library with DOI). Hence, the open dialog, initiated by you, would be open to
the community as well. Please answer us, if you agree on this. We will make our letters public to the
Fluid Power Community at least to the German Fluid Power Community.

Consensus and differences

Consensus

- Difference in representation of mechanical hydraulic efficiency leads to neglectable
differences in mechanical hydraulic efficiency values

- Difference in representation of overall efficiency leads to neglectable differences in overall
efficiency

Differences

- Consistency of approach deriving partial efficiencies
- Understanding of volumetric efficiency and its relevance for the manufacturers

Peter Pelz and Christian Schanzle

PS: Response to your second review on 13th August, 2021
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Response to your second review on 13th August, 2021

Response to comments to point 1:

We want to underline our statement, that “definitions are never wrong”. Thus, consistency is not a
euphemism for “wrong”.

Response to comments to point 2 and 3:

We follow your argumentation that values obtained by our different efficiency definitions are nearly
identical. However, in our opinion, this makes your approach defining the overall and the mechanical
hydraulic efficiency independently of each other not consistent.

The way of integration of the inner energy in your paper is neither transparent nor comprehensible.
Not including the density in the integral and the associated assumptions and simplifications as
presented in Mr. Mommers' email on 6th August are not available to the reader. In our opinion, our
misunderstanding of your approach is not our fault, but a result of the non-transparent assumptions.

At the same time, we are not able to apply this form of integration of the inner energy (equation 5 in

1
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In our opinion, this makes your approach inconsistent. This does not mean your approach is wrong,
but your assumptions are not consistent. This leads to representations, which in our opinion are
unnecessarily complicated.

Response to comments to point 4:

We presented our view on the volumetric efficiency in our last review and in our revised paper.
Therefore, we will not repeat it.

In addition to the possibility of using the volumetric efficiency as a ratio of two energetic quantities,
the volumetric efficiency also represents an essential quantity describing the function of a machine,
whereas the overall efficiency measures the energetic quality of a machine. In our understanding, a
separation of the function and the quality is essential for a sustainable systems design. Moreover, the
customer of a pump manufacturer is mostly interested in the function of a machine described by the
volumetric efficiency. Your arguments for no longer naming the volumetric efficiency do not convince
us. Neither from the customer's point of view nor from the manufacturer's point of view.

We accept the fact that for your mentioned application, e.g. a closed circuit pump with a low pressure
around 20 bar, our system boundary and circuitry (see Figure 1 in our paper) is not applicable.
Nevertheless, we are transparent with our system boundary and present our assumptions in a
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transparent and comprehensible way. Furthermore, your argument is that the obtained values from
the different definitions are nearly identical.
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8. Comment from Robin Mommers and Peter Achten to Note_210818
(Comment_210825_note_Pelz, send to Christian Schanzle and Peter Pelz on
August 25, 2021)



Dear mr Pelz, dear mr Schanzle,

In this comment, | will not respond to the discussion about the volumetric efficiency. We'll be happy to
discuss this at a later point. | do want to make a comment on some of the choices that we made in our
paper, and on the inequality you shared with us in you previous note.

In your response, you mention several stakeholders in the hydraulic industry:

1. OEM, Owner-Operator

2. Manufacturer

3. Scientist

| think it is fair to say that your perspective is mainly from the third group, while we might be more between

the second and the third group. If one looks at any definition (in this case “the way to measure efficiency”),

we look at this from our own perspective. | mention this, because | think that this might explain some of the
differences in the assumptions that both of us have made.

Our perspective

This morning | have been measuring the performance of one of our prototype pumps, which you see in this
photo below. This machine has a supply line (right side on bottom), a discharge line (left side on bottom),
and a drain line (hose coming out at the side). This is not unique, and is actually the case for most pumps
that we test on our test bench. In accordance with ISO4409 standard, we measure:

- the pressure and temperature of all lines

- flow rate of discharge and drain line

- torque and speed of the axle (actuated on the other side of wall)

Oil that leaves the pump via the drain port is directed to a tank (0 bar). A smaller pump pumps oil from the
tank into the low pressure circuit (often between 5 and 15 bar), from which the tested pump is fed.

W ——

The symbolic representation of this pump is shown on the right, which you might recognise as figure 1 from
our paper. Since the left figure is our starting point, and we want to include all possible pumps, we chose
our system boundaries different than you did (note that when there is no external drain port, our derived
system can still be used).

In one of your earlier comments you mentioned that choosing the system boundaries like this will mean that
you no longer have a constant mass flow. We agree, and this is one of the challenges we had in the writing
of our paper. However, as mentioned above, we tried to find a relation that is applicable to all pump and
motors, and not just machines without an external drain. In our experience, there are a lot of displacement
machine that have an external drain port.

In recent years, there have been some units for which a mechanical efficiency was measuring of more than
one. As a result, it was becoming clear that the effects of compression can no longer be ignored when
calculating the efficiencies of pumps and motors. This is why we started working on better definitions,
which is still an ongoing discussion, as you are well aware.



Our paper

In the first part of our paper, we are only looking at the flow of energy and thus power in the machine. Using
the thermodynamic system with the boundaries shown in the symbolic pump representation above, and
some common assumptions (e.g. no power loss due to radiation), we form some basic equations to

determine the power loss. The mechanical input power (Tw) is converted to hydraulic power (which is the

output power), and some of this converted power is lost via the drain line. The amount of power loss for this
pump is thus found to be:

Ploss=Pin_P0ut=Tw_Phyd M

We both agree on this definition, but we have different opinions about the loss that occurs via the drain line.

In the second part of our paper, we are trying to determine what is the ideal torque. The pV-diagram is a
very powerful tool for understanding why the compression effects should be taken into account, which is
probably why you also have several pV-diagrams in your paper. In your last response you show that there is
an inconsistency in the way we calculate the compression energy during the integration of the internal
energy and when we are interpreting the pV-diagram. While this is factually correct, this is merely an artefact

of using a constant bulk modulus and only using the first term of the Taylor expansion that is related to the
volume change.

Allow me to explain. You wrote the following:
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The left side of the inequality sign comes from figure 2 of our paper, which is the same as the pV-diagram
shown below. The right side comes from the integral that we defined earlier (equations 5 and 6). If |

understand correctly, you are calculating the energy change when you start at pressure p;,
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and compress to pressure p,, volume V.
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The figure is showing the the dashed area is almost a triangle, which means that the size of the area will be

very close to 0.5 - Ap(V,, .. — V5). The change in volume that is between brackets is also part of the

ax
second term on the right side of the inequality sign in (2). So we need to determine the amount of volume

change during commutation. The volume at p, due to compression is as follows:

2 dp

Vy=V, e K (3)

max

If we assume a constant bulk modulus, this simplifies to

_pP2—P

V2 = Vmaxe K (4)

Using only the first term of the Taylor expansion of the exponential function, the volume change is found to
be:

P2 — D1 P2 — P
V2 = Vmax (1 - T) - Vmax - VZ = VmaxT ©)

However, since the integral that is in the exponential of (3) is reversible, we can just as well state that the
following is true:

Following the same reasoning, this results in:

Pr— P P2—P1
max 2< K ) max 2 2 K ()

Both (5) and (7) describe the same amount of volume, but merely differ due to an arbitrary choice. This is
similar to the conclusion you made for yourself at the end of section 3.1 of your paper, for which you find
the difference to be negligible. We can consider this to be an “inconsistent” use of choosing (5) or (7), but as
far as simplifications go, they are effectively “the same”. As you also mentioned, we wanted to focus on
what can be used practically. We believe that our way of formulating it is the most practical one. While the
equations you found are slightly different, they are almost identical.

Actual discussion

This leaves me to address an actual point of discussion, which you might have missed in our first review.
We asked you how you “How do you suggest that V,fﬁl can be measured?”, since it is such an important
parameter in the equations that you end up with. Your answer was that is can be calculated using equations

(13) and (14) of your paper. However, the reason we asked this question was not because it was unclear
how you calculate it.

The actual question was “How do you suggest that Veﬁ;l can be measured, in practice?”. The dead volume

of a working chamber is defined a V; in your paper, and as V, ;, in ours. We asked this question, since we
have not been able to find a good way to determine this dead volume in a commercial machine, other than
looking at drawings (which are often drastically simplified for cleanliness) and measuring it with callipers and
other measuring devices in the actual machine (which is very inaccurate). Do you have any ideas on this?





